Model description

Cased fine-tuned XLM-RoBERTa-base model for Hungarian and English, trained on datasets provided by the National Tax and Customs Administration - Hungary (NAV) and translated versions of the same dataset using Google Translate API.

Intended uses & limitations

The model is designed to classify sentences as either "comprehensible" or "not comprehensible" (according to Plain Language guidelines):

  • Label_0 - "comprehensible" - The sentence is in Plain Language.
  • Label_1 - "not comprehensible" - The sentence is not in Plain Language.

Training

Fine-tuned version of the original xlm-roberta-base model, trained on a dataset of Hungarian legal and administrative texts. The model was also trained on the translated version of this dataset (via Google Translate API) for English classification.

Eval results

Hungarian Results:

Class Precision Recall F1-Score
Comprehensible / Label_0 0.82 0.62 0.70
Not comprehensible / Label_1 0.71 0.88 0.78
accuracy 0.75
macro avg 0.77 0.75 0.74
weighted avg 0.76 0.75 0.74

English Results:

Class Precision Recall F1-Score
Comprehensible / Label_0 0.70 0.50 0.58
Not comprehensible / Label_1 0.63 0.80 0.70
accuracy 0.65
macro avg 0.66 0.65 0.64
weighted avg 0.66 0.65 0.64

Usage

from transformers import AutoTokenizer, AutoModelForSequenceClassification

tokenizer = AutoTokenizer.from_pretrained("uvegesistvan/Hun_Eng_RoBERTa_base_Plain")
model = AutoModelForSequenceClassification.from_pretrained("uvegesistvan/Hun_Eng_RoBERTa_base_Plain")

BibTeX entry and citation info

If you use the model, please cite the following dissertation (to be submitted for workshop discussion):

Bibtex:

@PhDThesis{ Uveges:2024,
  author = {{"U}veges, Istv{\'a}n},
  title  = {K{\"o}z{\'e}rthet{\"o} és automatiz{\'a}ci{\'o} - k{\'i}s{\'e}rletek a jog, term{\'e}szetesnyelv-feldolgoz{\'a}s {\'e}s informatika hat{\'a}r{\'a}n.},
  year   = {2024},
  school = {Szegedi Tudom{\'a}nyegyetem}
}
Downloads last month
12
Safetensors
Model size
278M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Evaluation results