utyug1 commited on
Commit
848a8c4
·
1 Parent(s): 68b0605

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 295.42 +/- 20.88
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 301.67 +/- 11.74
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f973a541310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973a5413a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973a541430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973a5414c0>", "_build": "<function ActorCriticPolicy._build at 0x7f973a541550>", "forward": "<function ActorCriticPolicy.forward at 0x7f973a5415e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973a541670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f973a541700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973a541790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973a541820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973a5418b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f973a539cc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 30400000, "_total_timesteps": 50000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671197502396425412, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbjjT1VERU+Dmlvvo4dDr+F9zo9YDcyvgAAAAAAAAAADQ2avWEvjbzZzac+Z4Aivn/lGr1wGEq/AACAPwAAgD8zA8i7j+ZBuoPlbLagWFix9C2aOS2BkTUAAIA/AACAP5plhDyuQ6m6fQ3dPa/6hT3sbLk7Kt9FugAAgD8AAIA/ZmaXOxRwiLol660zkDc1MI1aPbpQILOzAACAPwAAgD8Aflc9Q0YtvGLwVL47NK67jhLLu1u8vb0AAIA/AACAP6bk+b3JIQ0/Iid2PaWCRL/ixYC+OHDxPQAAAAAAAAAAWhslvtJxpz8lBKC+49szvyP6xL7zkZK+AAAAAAAAAABm02g9sELoPqxdqrwPtjy/s2UhPtteb70AAAAAAAAAAM1g9buuD5u6r+2ZPccLDbYMgfS6Zp4GtQAAgD8AAIA/ja2jPUjUnD9C4ls+8z0uv5jNmj4aBmA+AAAAAAAAAABmIFi8w3BOO8LNh73thjO+JuHyvX7/Jz8AAIA/AAAAALMSG74txUk+QPHfPvuRKL+VDDI9flKZPgAAAAAAAAAATbwQPXHMZ7v1J1q8cvd2PKEG2zy69lS9AACAPwAAgD/NreS83N+pP0UOJr5k/OC++MQpvXTGSL4AAAAAAAAAAOZXV732uAc/cBNiPOByUL+UA++9m8hrPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.39248128000000004, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkWEVb2Qbc0CUhpRSlIwBbJRLyIwBdJRHQM8kqzd+G491fZQoaAZoCWgPQwidLouJjRRyQJSGlFKUaBVLqGgWR0DPJK2OsDGMdX2UKGgGaAloD0MIAU2EDU+EckCUhpRSlGgVS7RoFkdAzyS3eNT99HV9lChoBmgJaA9DCLhc/dgkg3JAlIaUUpRoFUucaBZHQM8kyOkDZDl1fZQoaAZoCWgPQwgCEk2gCN1yQJSGlFKUaBVLvWgWR0DPJMlstTUBdX2UKGgGaAloD0MIjBU1mEZ0dECUhpRSlGgVS6xoFkdAzyTOhje9BnV9lChoBmgJaA9DCGed8X0xzHNAlIaUUpRoFUu4aBZHQM8k0Oez2OB1fZQoaAZoCWgPQwg/VBoxM7tzQJSGlFKUaBVLuGgWR0DPJN1mJ3xGdX2UKGgGaAloD0MI5s5MMBz6cECUhpRSlGgVS6JoFkdAzyTg7r9l3HV9lChoBmgJaA9DCKSOjquRqHFAlIaUUpRoFUuMaBZHQM8k5021lXl1fZQoaAZoCWgPQwg/j1GeeSh0QJSGlFKUaBVLwmgWR0DPJPB0EHMVdX2UKGgGaAloD0MI5MCr5U4ldECUhpRSlGgVS8ZoFkdAzyT0elKsdXV9lChoBmgJaA9DCIY8ghspgnBAlIaUUpRoFUuwaBZHQM8k9ejEehh1fZQoaAZoCWgPQwjEswQZgWFzQJSGlFKUaBVLoGgWR0DPJPb2rXDndX2UKGgGaAloD0MIKc5RR8d4c0CUhpRSlGgVS6xoFkdAzyT6CyyD7XV9lChoBmgJaA9DCNNsHofBi3JAlIaUUpRoFUv0aBZHQM8k/jFZPmB1fZQoaAZoCWgPQwjJ/+TvHhdzQJSGlFKUaBVNFAFoFkdAzyT+p6QeWHV9lChoBmgJaA9DCH0FacYi2HNAlIaUUpRoFUuwaBZHQM8lB2BBiTd1fZQoaAZoCWgPQwjDnKBNTi5yQJSGlFKUaBVLgmgWR0DPJQqsySFHdX2UKGgGaAloD0MIc0f/y7XycECUhpRSlGgVS59oFkdAzyUUcmShanV9lChoBmgJaA9DCK8nui78snJAlIaUUpRoFUusaBZHQM8lFQOe8PF1fZQoaAZoCWgPQwhwtOOGX3NzQJSGlFKUaBVLvGgWR0DPJRwPuogndX2UKGgGaAloD0MIprVpbO9ycUCUhpRSlGgVS55oFkdAzyUiBFuvU3V9lChoBmgJaA9DCB3HD5XGOnNAlIaUUpRoFUuqaBZHQM8lKooE0SB1fZQoaAZoCWgPQwg8okJ1M8xyQJSGlFKUaBVLkWgWR0DPJS3l6qsEdX2UKGgGaAloD0MIfqt14rKcckCUhpRSlGgVS4toFkdAzyUuxzJZGXV9lChoBmgJaA9DCHlA2ZQrhG9AlIaUUpRoFUuSaBZHQM8lMsA3kxR1fZQoaAZoCWgPQwjk1qTbEnZzQJSGlFKUaBVLuGgWR0DPJTX4mCyydX2UKGgGaAloD0MIxhhYx/FLcECUhpRSlGgVS5loFkdAzyU2l+EytXV9lChoBmgJaA9DCCuGqwOglnFAlIaUUpRoFUunaBZHQM8lPprtVrB1fZQoaAZoCWgPQwj8prBSQXNvQJSGlFKUaBVLmmgWR0DPJUcLQXyidX2UKGgGaAloD0MIPiZSmg3zc0CUhpRSlGgVS7VoFkdAzyVIlwcYInV9lChoBmgJaA9DCP922a97qXNAlIaUUpRoFUu3aBZHQM8lSd+G47R1fZQoaAZoCWgPQwjjOPBqOTxyQJSGlFKUaBVLo2gWR0DPJU5B5X2edX2UKGgGaAloD0MIPudu10tLb0CUhpRSlGgVS5NoFkdAzyVR3pOernV9lChoBmgJaA9DCHALluqCvXBAlIaUUpRoFUusaBZHQM8lYzNMXad1fZQoaAZoCWgPQwjaqbncoNdzQJSGlFKUaBVLwGgWR0DPJWQPmPo3dX2UKGgGaAloD0MIXd2x2GbUcECUhpRSlGgVS4VoFkdAzyVkpT/ACXV9lChoBmgJaA9DCPJ376hx/HJAlIaUUpRoFUuiaBZHQM8lZSeAd4p1fZQoaAZoCWgPQwi+oIUEjJpwQJSGlFKUaBVLlWgWR0DPJWfxUedTdX2UKGgGaAloD0MIIk+SrhnAcECUhpRSlGgVS6BoFkdAzyVwPtD2J3V9lChoBmgJaA9DCBHEeTiB3URAlIaUUpRoFUtraBZHQM8ldHsLORl1fZQoaAZoCWgPQwg2zTtOEZpyQJSGlFKUaBVLomgWR0DPJXiC6H0sdX2UKGgGaAloD0MIfhr35rdBckCUhpRSlGgVS7poFkdAzyV/YwIt2HV9lChoBmgJaA9DCG8RGOsbzHBAlIaUUpRoFUuhaBZHQM8lgaxPfsN1fZQoaAZoCWgPQwj2tpkKMQhzQJSGlFKUaBVLvGgWR0DPJYSC+UQkdX2UKGgGaAloD0MISino9pJ9cECUhpRSlGgVS45oFkdAzyWE8qWkanV9lChoBmgJaA9DCPmHLT2afkFAlIaUUpRoFUtfaBZHQM8ljL876pJ1fZQoaAZoCWgPQwhFEOfhBAZzQJSGlFKUaBVLtmgWR0DPJZLUAks0dX2UKGgGaAloD0MIfH2tSw05ckCUhpRSlGgVS69oFkdAzyWXJf6XSnV9lChoBmgJaA9DCIQqNXug33FAlIaUUpRoFUu6aBZHQM8ln938n/l1fZQoaAZoCWgPQwjFHtrHCtZwQJSGlFKUaBVLpGgWR0DPJajYwqRVdX2UKGgGaAloD0MIqaCi6tdJckCUhpRSlGgVS6RoFkdAzyWpzQu27XV9lChoBmgJaA9DCMf0hCUeMXNAlIaUUpRoFUumaBZHQM8lqz4L1Ep1fZQoaAZoCWgPQwjVz5uK1G9yQJSGlFKUaBVLtGgWR0DPJbTEUCaJdX2UKGgGaAloD0MIqJAr9ezkcUCUhpRSlGgVS5xoFkdAzyW8L0BfbHV9lChoBmgJaA9DCHWPbK5aO3RAlIaUUpRoFUuzaBZHQM8lvZZ8rqd1fZQoaAZoCWgPQwiU3je+dhhzQJSGlFKUaBVLqmgWR0DPJb4cWCVbdX2UKGgGaAloD0MIQieEDvr4cECUhpRSlGgVS5VoFkdAzyXACBf8dnV9lChoBmgJaA9DCGuBPSZSd3JAlIaUUpRoFUuHaBZHQM8lxvLHMll1fZQoaAZoCWgPQwjWGkrtBTdyQJSGlFKUaBVLqWgWR0DPJco2CNCJdX2UKGgGaAloD0MI64zviwshckCUhpRSlGgVS6loFkdAzyXNOryUcHV9lChoBmgJaA9DCHy1oziHWnNAlIaUUpRoFUu8aBZHQM8l1Ny5qdp1fZQoaAZoCWgPQwih+DHmbkZxQJSGlFKUaBVLoWgWR0DPJdg+MZP3dX2UKGgGaAloD0MIcoi4ORUrcUCUhpRSlGgVS61oFkdAzyXiBun/DXV9lChoBmgJaA9DCG9FYoKay3JAlIaUUpRoFUueaBZHQM8l5DnNgSh1fZQoaAZoCWgPQwjzrnrA/PZxQJSGlFKUaBVLpWgWR0DPJfAkJKJ3dX2UKGgGaAloD0MIsDkHzwSBcUCUhpRSlGgVS6NoFkdAzyXwJ+lTFXV9lChoBmgJaA9DCH/7OnCOvHFAlIaUUpRoFUuoaBZHQM8l87R4QjF1fZQoaAZoCWgPQwgBpaFGoVByQJSGlFKUaBVLiWgWR0DPJfci+tbLdX2UKGgGaAloD0MITDYebDGmZECUhpRSlGgVTegDaBZHQM8l+Ji7TUl1fZQoaAZoCWgPQwhDAkaXN6dvQJSGlFKUaBVLjmgWR0DPJfsSuhbodX2UKGgGaAloD0MIVoFaDF4Kc0CUhpRSlGgVS5doFkdAzyX+Hqu8snV9lChoBmgJaA9DCJyMKsN4W3NAlIaUUpRoFUuPaBZHQM8mBBE8aGZ1fZQoaAZoCWgPQwgNN+DzAzF0QJSGlFKUaBVLzGgWR0DPJgtSbYsedX2UKGgGaAloD0MIgjtQp3z5ckCUhpRSlGgVS7doFkdAzyYNUlzEJnV9lChoBmgJaA9DCFLt0/FYW3JAlIaUUpRoFUueaBZHQM8mDV1GLDR1fZQoaAZoCWgPQwh0mgXanQ10QJSGlFKUaBVLs2gWR0DPJhhI6KcedX2UKGgGaAloD0MIVRUaiCV1cUCUhpRSlGgVS6JoFkdAzyYY08eS0XV9lChoBmgJaA9DCAJiEi4kt3FAlIaUUpRoFUuTaBZHQM8mHtI065p1fZQoaAZoCWgPQwg7inPUEWRxQJSGlFKUaBVLlmgWR0DPJiI3tKI0dX2UKGgGaAloD0MIorjjTT4IdECUhpRSlGgVS7JoFkdAzyYipTdcjnV9lChoBmgJaA9DCJwwYTTrvHBAlIaUUpRoFUuYaBZHQM8mMbz9S/F1fZQoaAZoCWgPQwjx1Y7iHEt0QJSGlFKUaBVLtGgWR0DPJjq4tpVTdX2UKGgGaAloD0MIYvVHGEafckCUhpRSlGgVS7hoFkdAzyY8d4mkWXV9lChoBmgJaA9DCPxVgO+2U3FAlIaUUpRoFUuiaBZHQM8mPe5nUUh1fZQoaAZoCWgPQwgzNJ4IIltyQJSGlFKUaBVLsmgWR0DPJkCgM+eOdX2UKGgGaAloD0MIldOekvOsc0CUhpRSlGgVS7VoFkdAzyZDHDJlrnV9lChoBmgJaA9DCIuMDkhCJnJAlIaUUpRoFUuzaBZHQM8mR/vfCQ91fZQoaAZoCWgPQwinrRHBeO1zQJSGlFKUaBVLrGgWR0DPJktcv/R3dX2UKGgGaAloD0MIJ6CJsGECckCUhpRSlGgVS6FoFkdAzyZQHcDbJ3V9lChoBmgJaA9DCM3mcRhMJnNAlIaUUpRoFUu2aBZHQM8mVscQyyl1fZQoaAZoCWgPQwg6V5QSQnxxQJSGlFKUaBVLtWgWR0DPJlhv3rUtdX2UKGgGaAloD0MICDwwgLB4c0CUhpRSlGgVS6NoFkdAzyZdFvQ4THV9lChoBmgJaA9DCPDAAMIHH3JAlIaUUpRoFUuWaBZHQM8mYV/DtPZ1fZQoaAZoCWgPQwjmBkMdFulzQJSGlFKUaBVLsmgWR0DPJmK+tbLVdX2UKGgGaAloD0MIxJRIohcockCUhpRSlGgVS61oFkdAzyZm5ksjFHV9lChoBmgJaA9DCExvfy5a6nNAlIaUUpRoFUuvaBZHQM8matTLns91fZQoaAZoCWgPQwhlNzP6kXxyQJSGlFKUaBVLgmgWR0DPJm9XmvGIdX2UKGgGaAloD0MIUpyjjg7yckCUhpRSlGgVS5JoFkdAzyZ3RKpT/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7416, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ob21lL2JvcmlzLnVzdHl1Z292L21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2hvbWUvYm9yaXMudXN0eXVnb3YvbWluaWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f973a541310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973a5413a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973a541430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973a5414c0>", "_build": "<function ActorCriticPolicy._build at 0x7f973a541550>", "forward": "<function ActorCriticPolicy.forward at 0x7f973a5415e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973a541670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f973a541700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973a541790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973a541820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973a5418b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f973a539cc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 46400000, "_total_timesteps": 50000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671197502396425412, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAQV7yF/s27wINOPgdLhr3WawI88t+6PgAAgD8AAIA/mhdivXgK8z1DMYU+10cIvzCGOT19+WU+AAAAAAAAAAAAiE484dCVus/BRbZRFDGxf46Gupt/YTUAAIA/AACAP2ZHYT6hJj4/o331PGaQN79POAw/XEMNvgAAAAAAAAAAmnjKPPa4SrplU469C8iOu9HZZzumo0o8AACAPwAAgD+aKTU7XO8NuqLRMDOOFDQvzH8KO64+0LMAAIA/AACAP0aHHT4Eqo0+KUm2viZJKb8tECk+Tm2kvgAAAAAAAAAAZmGiPFl3ej9qJnI9HYJ3vyNlrD17goo7AAAAAAAAAACambw4fuS0PznoFDwentE9STDMuGnrBrsAAAAAAAAAAFNNL76PEag/dn7tvkNxE7+1eu++wZ2bvgAAAAAAAAAAmmlAO1xrZLpugdOzz2NlL3zsh7rmWqczAACAPwAAgD+auWq671OJPmUkzjyEtiq/syCzPCpoizwAAAAAAAAAAACBmDwDPEG8u6QRvpAAiT39bNa7b7YTuwAAgD8AAIA/urhbvkcisD8WIxa/hdT4vqhCD78gaN6+AAAAAAAAAACAtQA9ZdFBP/Uvmz0P4Hy/+rr6PcPF3LwAAAAAAAAAAJqthTy4I7+7VYjlvby8Iz3VeiY9vxUHvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.07201024, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwRn8/aKNckCUhpRSlIwBbJRLpYwBdJRHQNdumvQ4S6F1fZQoaAZoCWgPQwgFw7mGmWFzQJSGlFKUaBVLoWgWR0DXbps55qubdX2UKGgGaAloD0MIy5wuiwlYcUCUhpRSlGgVS6NoFkdA126bO0b963V9lChoBmgJaA9DCCKq8Gd413NAlIaUUpRoFUu3aBZHQNduo99c8kl1fZQoaAZoCWgPQwjO3hltFXpzQJSGlFKUaBVLtGgWR0DXbqQiwB5pdX2UKGgGaAloD0MIdQKaCJsPckCUhpRSlGgVS5NoFkdA126lrqMWGnV9lChoBmgJaA9DCCqsVFDR3nJAlIaUUpRoFUuCaBZHQNdup3sPatd1fZQoaAZoCWgPQwjbh7zlqmBxQJSGlFKUaBVLm2gWR0DXbquKUFB6dX2UKGgGaAloD0MI8j/5u/drcECUhpRSlGgVS51oFkdA126r2/BWP3V9lChoBmgJaA9DCF1Q3zInTHFAlIaUUpRoFUuWaBZHQNdurBBzFMt1fZQoaAZoCWgPQwiRRC+jmBFyQJSGlFKUaBVLoGgWR0DXbrfu2JBPdX2UKGgGaAloD0MILEme6zsMdECUhpRSlGgVS7toFkdA1266gQYk3XV9lChoBmgJaA9DCFSnA1mPuHJAlIaUUpRoFUuxaBZHQNduvZUtI091fZQoaAZoCWgPQwhODMnJBMZzQJSGlFKUaBVLqmgWR0DXbr6QA+6idX2UKGgGaAloD0MICM2ueytRUUCUhpRSlGgVS39oFkdA127CTyauwHV9lChoBmgJaA9DCMPVARA3F3NAlIaUUpRoFUuuaBZHQNduxGyHEdh1fZQoaAZoCWgPQwjW5v9VR/FyQJSGlFKUaBVLsmgWR0DXbsUhouf3dX2UKGgGaAloD0MIzhlR2tsac0CUhpRSlGgVS7loFkdA127HCVKPGXV9lChoBmgJaA9DCOXuc3w0fnBAlIaUUpRoFUvDaBZHQNduyKBEroZ1fZQoaAZoCWgPQwivsOB+gHZyQJSGlFKUaBVLj2gWR0DXbsnFZPl/dX2UKGgGaAloD0MINZvHYXCRckCUhpRSlGgVS69oFkdA127NmUW2w3V9lChoBmgJaA9DCFfuBWZFJHFAlIaUUpRoFUuSaBZHQNduzndweeZ1fZQoaAZoCWgPQwisONVaGDp0QJSGlFKUaBVLv2gWR0DXbtLL9uP4dX2UKGgGaAloD0MIBthHp277cECUhpRSlGgVS6VoFkdA127TSTQmeHV9lChoBmgJaA9DCJKU9DB0OnJAlIaUUpRoFUunaBZHQNdu05ON5t51fZQoaAZoCWgPQwi2SUVjLWRxQJSGlFKUaBVLqGgWR0DXbt/RIBikdX2UKGgGaAloD0MI7GzIP7PicECUhpRSlGgVS6NoFkdA127hKKHfuXV9lChoBmgJaA9DCOl942vPnlFAlIaUUpRoFUtUaBZHQNdu4XkT6BR1fZQoaAZoCWgPQwjrjsU2KSNxQJSGlFKUaBVLlmgWR0DXbuW+cpb2dX2UKGgGaAloD0MIml33ViSMdECUhpRSlGgVS69oFkdA127oPWxyGXV9lChoBmgJaA9DCO/nFOQnGHJAlIaUUpRoFUuqaBZHQNdu7P8qFyt1fZQoaAZoCWgPQwhuTbot0Vp0QJSGlFKUaBVLyWgWR0DXbu254GD+dX2UKGgGaAloD0MI9iSwOYc4cUCUhpRSlGgVS5loFkdA127uZ0CA+nV9lChoBmgJaA9DCDCDMSLRU3JAlIaUUpRoFUuxaBZHQNdu7029+PR1fZQoaAZoCWgPQwjdskP8Q0l0QJSGlFKUaBVLvGgWR0DXbvOlabF1dX2UKGgGaAloD0MIu9IyUu/lb0CUhpRSlGgVS41oFkdA1271QPI4l3V9lChoBmgJaA9DCBR3vMnvvnBAlIaUUpRoFUuoaBZHQNdu9qKLsKN1fZQoaAZoCWgPQwi5jnHFhRZ0QJSGlFKUaBVLxWgWR0DXbvdWuHN5dX2UKGgGaAloD0MIFCLgEKqnb0CUhpRSlGgVS5loFkdA1273m3fAK3V9lChoBmgJaA9DCEMaFTiZ/nJAlIaUUpRoFUu8aBZHQNdvAFRtP551fZQoaAZoCWgPQwhSRfEqq25xQJSGlFKUaBVLjmgWR0DXbwdyyUs4dX2UKGgGaAloD0MI+5XOh+eQcECUhpRSlGgVS6JoFkdA128H9Oymh3V9lChoBmgJaA9DCGYUyy1tzXFAlIaUUpRoFUuoaBZHQNdvCDqB3A51fZQoaAZoCWgPQwjQtS+g13ZzQJSGlFKUaBVLo2gWR0DXbwiIrOJMdX2UKGgGaAloD0MImpMXmUDkcECUhpRSlGgVS5RoFkdA128SRLK3eHV9lChoBmgJaA9DCC+jWG4pS3NAlIaUUpRoFUufaBZHQNdvEo9X9zh1fZQoaAZoCWgPQwhLyAc9m4BzQJSGlFKUaBVLu2gWR0DXbxSuX/o8dX2UKGgGaAloD0MIVHJO7OFecUCUhpRSlGgVS6doFkdA128V4mkWRHV9lChoBmgJaA9DCLqgvmUOp3NAlIaUUpRoFUu1aBZHQNdvGGpMpPR1fZQoaAZoCWgPQwhRaFn3D0xxQJSGlFKUaBVLpWgWR0DXbxqliz9kdX2UKGgGaAloD0MIdVq3QS00ckCUhpRSlGgVS6ZoFkdA128d1k1/D3V9lChoBmgJaA9DCKj/rPnxiXNAlIaUUpRoFUuzaBZHQNdvIcVk+X91fZQoaAZoCWgPQwhZiA6BI6dzQJSGlFKUaBVLv2gWR0DXbyKKm8/VdX2UKGgGaAloD0MIho4dVGLXc0CUhpRSlGgVS7toFkdA128j+T/yXnV9lChoBmgJaA9DCHdkrDZ/CnRAlIaUUpRoFUu4aBZHQNdvLDhYNiJ1fZQoaAZoCWgPQwiLxtrfmTNxQJSGlFKUaBVLpmgWR0DXby7W8RL9dX2UKGgGaAloD0MIg23Ek918cUCUhpRSlGgVS6xoFkdA128wvkili3V9lChoBmgJaA9DCBb8NsR4kHJAlIaUUpRoFUutaBZHQNdvMX+hoM91fZQoaAZoCWgPQwhv2LYoM45yQJSGlFKUaBVLsWgWR0DXbzIuK4x2dX2UKGgGaAloD0MIZaa0/pZhcECUhpRSlGgVS4toFkdA128zVmjCYXV9lChoBmgJaA9DCLwEpz5QH3JAlIaUUpRoFUuTaBZHQNdvOGahHsl1fZQoaAZoCWgPQwiCOuXRTb9yQJSGlFKUaBVLsmgWR0DXbz6f8MuwdX2UKGgGaAloD0MI6X5OQb4YdECUhpRSlGgVS8JoFkdA129AGnGbTnV9lChoBmgJaA9DCC3pKAdznHJAlIaUUpRoFUuvaBZHQNdvRCIgvDh1fZQoaAZoCWgPQwjhzoWR3vlpQJSGlFKUaBVN6ANoFkdA129FE61b7nV9lChoBmgJaA9DCH0+yohLYnRAlIaUUpRoFUu/aBZHQNdvRYcrAgx1fZQoaAZoCWgPQwjFxVG5iapzQJSGlFKUaBVLqGgWR0DXb0W6qbSadX2UKGgGaAloD0MIXtpwWJoEckCUhpRSlGgVS59oFkdA129HGbTc7HV9lChoBmgJaA9DCPTEc7aAIXJAlIaUUpRoFUvAaBZHQNdvTgKBuoB1fZQoaAZoCWgPQwiU+rK0kxdwQJSGlFKUaBVLvWgWR0DXb06zOX3QdX2UKGgGaAloD0MIP1WFBqLpcECUhpRSlGgVS51oFkdA129RoMKCx3V9lChoBmgJaA9DCA1Uxr/PAnJAlIaUUpRoFUuRaBZHQNdvUgNXo1V1fZQoaAZoCWgPQwhj0XR2MhByQJSGlFKUaBVLrGgWR0DXb1KCL/CJdX2UKGgGaAloD0MIPZzAdFoKc0CUhpRSlGgVS6FoFkdA129UGM4tH3V9lChoBmgJaA9DCKD+s+ZHcHNAlIaUUpRoFUu5aBZHQNdvWXo1UER1fZQoaAZoCWgPQwiqC3iZIWp0QJSGlFKUaBVLtGgWR0DXb1oKjSG8dX2UKGgGaAloD0MIKXrgY/DlcUCUhpRSlGgVS4VoFkdA129aOWBz3nV9lChoBmgJaA9DCLIQHQKHIXJAlIaUUpRoFUuoaBZHQNdvW/b0voN1fZQoaAZoCWgPQwi4j9yatC5xQJSGlFKUaBVLgWgWR0DXb13dsSCfdX2UKGgGaAloD0MIxM2pZEAlckCUhpRSlGgVS49oFkdA129hxCIDYHV9lChoBmgJaA9DCBR6/Um8Z3JAlIaUUpRoFUuKaBZHQNdvYl5OafB1fZQoaAZoCWgPQwga4e1BCHxzQJSGlFKUaBVLu2gWR0DXb2Yi2UjcdX2UKGgGaAloD0MIthMlIREHcECUhpRSlGgVS6xoFkdA129n8JUo8nV9lChoBmgJaA9DCDrpfeMrPnNAlIaUUpRoFUu8aBZHQNdvappi7TV1fZQoaAZoCWgPQwhH5pE/mOZxQJSGlFKUaBVLn2gWR0DXb26iwjdIdX2UKGgGaAloD0MIbvyJyoY1c0CUhpRSlGgVS6toFkdA129wbqyGBXV9lChoBmgJaA9DCA9Dq5MzJ3BAlIaUUpRoFUueaBZHQNdvcVD4QBh1fZQoaAZoCWgPQwicTx2rFG9zQJSGlFKUaBVLmmgWR0DXb3LufEn9dX2UKGgGaAloD0MIqODwgsiScUCUhpRSlGgVS4NoFkdA1290Z3LV4HV9lChoBmgJaA9DCGnjiLV4e3NAlIaUUpRoFUu3aBZHQNdvdqqjrRl1fZQoaAZoCWgPQwhMN4lB4PhyQJSGlFKUaBVLumgWR0DXb3e1twaSdX2UKGgGaAloD0MI2CssuB+pc0CUhpRSlGgVS6toFkdA1297kWykbnV9lChoBmgJaA9DCJoGRfMAt3BAlIaUUpRoFUumaBZHQNdvfSFK02N1fZQoaAZoCWgPQwizCTAs/xt0QJSGlFKUaBVLumgWR0DXb38NYr8SdX2UKGgGaAloD0MIVfmekcjWc0CUhpRSlGgVS7loFkdA12+C3LV4HHV9lChoBmgJaA9DCAO0rWZdG3BAlIaUUpRoFUuZaBZHQNdvhpCBwuN1fZQoaAZoCWgPQwj/y7VoQStxQJSGlFKUaBVLuGgWR0DXb4bTPSlWdX2UKGgGaAloD0MInYGRlzUuc0CUhpRSlGgVS7ZoFkdA12+HByS3b3V9lChoBmgJaA9DCD81XrpJmnBAlIaUUpRoFUumaBZHQNdvh3hXKbN1fZQoaAZoCWgPQwhoXg67LwZzQJSGlFKUaBVLr2gWR0DXcfhFocrBdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 11328, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ob21lL2JvcmlzLnVzdHl1Z292L21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2hvbWUvYm9yaXMudXN0eXVnb3YvbWluaWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c533c5cecb8b485a89b399247bc40abe6bc733934b819aad87591c5cecffd43
3
- size 147328
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:981841d4d836505911b8fb0cea491396e688c83990112c10a073aeeea644d3b9
3
+ size 147308
ppo-LunarLander-v2/data CHANGED
@@ -22,7 +22,7 @@
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
  "dtype": "float32",
27
  "_shape": [
28
  8
@@ -42,7 +42,7 @@
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 30400000,
46
  "_total_timesteps": 50000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
@@ -56,26 +56,26 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbjjT1VERU+Dmlvvo4dDr+F9zo9YDcyvgAAAAAAAAAADQ2avWEvjbzZzac+Z4Aivn/lGr1wGEq/AACAPwAAgD8zA8i7j+ZBuoPlbLagWFix9C2aOS2BkTUAAIA/AACAP5plhDyuQ6m6fQ3dPa/6hT3sbLk7Kt9FugAAgD8AAIA/ZmaXOxRwiLol660zkDc1MI1aPbpQILOzAACAPwAAgD8Aflc9Q0YtvGLwVL47NK67jhLLu1u8vb0AAIA/AACAP6bk+b3JIQ0/Iid2PaWCRL/ixYC+OHDxPQAAAAAAAAAAWhslvtJxpz8lBKC+49szvyP6xL7zkZK+AAAAAAAAAABm02g9sELoPqxdqrwPtjy/s2UhPtteb70AAAAAAAAAAM1g9buuD5u6r+2ZPccLDbYMgfS6Zp4GtQAAgD8AAIA/ja2jPUjUnD9C4ls+8z0uv5jNmj4aBmA+AAAAAAAAAABmIFi8w3BOO8LNh73thjO+JuHyvX7/Jz8AAIA/AAAAALMSG74txUk+QPHfPvuRKL+VDDI9flKZPgAAAAAAAAAATbwQPXHMZ7v1J1q8cvd2PKEG2zy69lS9AACAPwAAgD/NreS83N+pP0UOJr5k/OC++MQpvXTGSL4AAAAAAAAAAOZXV732uAc/cBNiPOByUL+UA++9m8hrPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
- ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": 0.39248128000000004,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkWEVb2Qbc0CUhpRSlIwBbJRLyIwBdJRHQM8kqzd+G491fZQoaAZoCWgPQwidLouJjRRyQJSGlFKUaBVLqGgWR0DPJK2OsDGMdX2UKGgGaAloD0MIAU2EDU+EckCUhpRSlGgVS7RoFkdAzyS3eNT99HV9lChoBmgJaA9DCLhc/dgkg3JAlIaUUpRoFUucaBZHQM8kyOkDZDl1fZQoaAZoCWgPQwgCEk2gCN1yQJSGlFKUaBVLvWgWR0DPJMlstTUBdX2UKGgGaAloD0MIjBU1mEZ0dECUhpRSlGgVS6xoFkdAzyTOhje9BnV9lChoBmgJaA9DCGed8X0xzHNAlIaUUpRoFUu4aBZHQM8k0Oez2OB1fZQoaAZoCWgPQwg/VBoxM7tzQJSGlFKUaBVLuGgWR0DPJN1mJ3xGdX2UKGgGaAloD0MI5s5MMBz6cECUhpRSlGgVS6JoFkdAzyTg7r9l3HV9lChoBmgJaA9DCKSOjquRqHFAlIaUUpRoFUuMaBZHQM8k5021lXl1fZQoaAZoCWgPQwg/j1GeeSh0QJSGlFKUaBVLwmgWR0DPJPB0EHMVdX2UKGgGaAloD0MI5MCr5U4ldECUhpRSlGgVS8ZoFkdAzyT0elKsdXV9lChoBmgJaA9DCIY8ghspgnBAlIaUUpRoFUuwaBZHQM8k9ejEehh1fZQoaAZoCWgPQwjEswQZgWFzQJSGlFKUaBVLoGgWR0DPJPb2rXDndX2UKGgGaAloD0MIKc5RR8d4c0CUhpRSlGgVS6xoFkdAzyT6CyyD7XV9lChoBmgJaA9DCNNsHofBi3JAlIaUUpRoFUv0aBZHQM8k/jFZPmB1fZQoaAZoCWgPQwjJ/+TvHhdzQJSGlFKUaBVNFAFoFkdAzyT+p6QeWHV9lChoBmgJaA9DCH0FacYi2HNAlIaUUpRoFUuwaBZHQM8lB2BBiTd1fZQoaAZoCWgPQwjDnKBNTi5yQJSGlFKUaBVLgmgWR0DPJQqsySFHdX2UKGgGaAloD0MIc0f/y7XycECUhpRSlGgVS59oFkdAzyUUcmShanV9lChoBmgJaA9DCK8nui78snJAlIaUUpRoFUusaBZHQM8lFQOe8PF1fZQoaAZoCWgPQwhwtOOGX3NzQJSGlFKUaBVLvGgWR0DPJRwPuogndX2UKGgGaAloD0MIprVpbO9ycUCUhpRSlGgVS55oFkdAzyUiBFuvU3V9lChoBmgJaA9DCB3HD5XGOnNAlIaUUpRoFUuqaBZHQM8lKooE0SB1fZQoaAZoCWgPQwg8okJ1M8xyQJSGlFKUaBVLkWgWR0DPJS3l6qsEdX2UKGgGaAloD0MIfqt14rKcckCUhpRSlGgVS4toFkdAzyUuxzJZGXV9lChoBmgJaA9DCHlA2ZQrhG9AlIaUUpRoFUuSaBZHQM8lMsA3kxR1fZQoaAZoCWgPQwjk1qTbEnZzQJSGlFKUaBVLuGgWR0DPJTX4mCyydX2UKGgGaAloD0MIxhhYx/FLcECUhpRSlGgVS5loFkdAzyU2l+EytXV9lChoBmgJaA9DCCuGqwOglnFAlIaUUpRoFUunaBZHQM8lPprtVrB1fZQoaAZoCWgPQwj8prBSQXNvQJSGlFKUaBVLmmgWR0DPJUcLQXyidX2UKGgGaAloD0MIPiZSmg3zc0CUhpRSlGgVS7VoFkdAzyVIlwcYInV9lChoBmgJaA9DCP922a97qXNAlIaUUpRoFUu3aBZHQM8lSd+G47R1fZQoaAZoCWgPQwjjOPBqOTxyQJSGlFKUaBVLo2gWR0DPJU5B5X2edX2UKGgGaAloD0MIPudu10tLb0CUhpRSlGgVS5NoFkdAzyVR3pOernV9lChoBmgJaA9DCHALluqCvXBAlIaUUpRoFUusaBZHQM8lYzNMXad1fZQoaAZoCWgPQwjaqbncoNdzQJSGlFKUaBVLwGgWR0DPJWQPmPo3dX2UKGgGaAloD0MIXd2x2GbUcECUhpRSlGgVS4VoFkdAzyVkpT/ACXV9lChoBmgJaA9DCPJ376hx/HJAlIaUUpRoFUuiaBZHQM8lZSeAd4p1fZQoaAZoCWgPQwi+oIUEjJpwQJSGlFKUaBVLlWgWR0DPJWfxUedTdX2UKGgGaAloD0MIIk+SrhnAcECUhpRSlGgVS6BoFkdAzyVwPtD2J3V9lChoBmgJaA9DCBHEeTiB3URAlIaUUpRoFUtraBZHQM8ldHsLORl1fZQoaAZoCWgPQwg2zTtOEZpyQJSGlFKUaBVLomgWR0DPJXiC6H0sdX2UKGgGaAloD0MIfhr35rdBckCUhpRSlGgVS7poFkdAzyV/YwIt2HV9lChoBmgJaA9DCG8RGOsbzHBAlIaUUpRoFUuhaBZHQM8lgaxPfsN1fZQoaAZoCWgPQwj2tpkKMQhzQJSGlFKUaBVLvGgWR0DPJYSC+UQkdX2UKGgGaAloD0MISino9pJ9cECUhpRSlGgVS45oFkdAzyWE8qWkanV9lChoBmgJaA9DCPmHLT2afkFAlIaUUpRoFUtfaBZHQM8ljL876pJ1fZQoaAZoCWgPQwhFEOfhBAZzQJSGlFKUaBVLtmgWR0DPJZLUAks0dX2UKGgGaAloD0MIfH2tSw05ckCUhpRSlGgVS69oFkdAzyWXJf6XSnV9lChoBmgJaA9DCIQqNXug33FAlIaUUpRoFUu6aBZHQM8ln938n/l1fZQoaAZoCWgPQwjFHtrHCtZwQJSGlFKUaBVLpGgWR0DPJajYwqRVdX2UKGgGaAloD0MIqaCi6tdJckCUhpRSlGgVS6RoFkdAzyWpzQu27XV9lChoBmgJaA9DCMf0hCUeMXNAlIaUUpRoFUumaBZHQM8lqz4L1Ep1fZQoaAZoCWgPQwjVz5uK1G9yQJSGlFKUaBVLtGgWR0DPJbTEUCaJdX2UKGgGaAloD0MIqJAr9ezkcUCUhpRSlGgVS5xoFkdAzyW8L0BfbHV9lChoBmgJaA9DCHWPbK5aO3RAlIaUUpRoFUuzaBZHQM8lvZZ8rqd1fZQoaAZoCWgPQwiU3je+dhhzQJSGlFKUaBVLqmgWR0DPJb4cWCVbdX2UKGgGaAloD0MIQieEDvr4cECUhpRSlGgVS5VoFkdAzyXACBf8dnV9lChoBmgJaA9DCGuBPSZSd3JAlIaUUpRoFUuHaBZHQM8lxvLHMll1fZQoaAZoCWgPQwjWGkrtBTdyQJSGlFKUaBVLqWgWR0DPJco2CNCJdX2UKGgGaAloD0MI64zviwshckCUhpRSlGgVS6loFkdAzyXNOryUcHV9lChoBmgJaA9DCHy1oziHWnNAlIaUUpRoFUu8aBZHQM8l1Ny5qdp1fZQoaAZoCWgPQwih+DHmbkZxQJSGlFKUaBVLoWgWR0DPJdg+MZP3dX2UKGgGaAloD0MIcoi4ORUrcUCUhpRSlGgVS61oFkdAzyXiBun/DXV9lChoBmgJaA9DCG9FYoKay3JAlIaUUpRoFUueaBZHQM8l5DnNgSh1fZQoaAZoCWgPQwjzrnrA/PZxQJSGlFKUaBVLpWgWR0DPJfAkJKJ3dX2UKGgGaAloD0MIsDkHzwSBcUCUhpRSlGgVS6NoFkdAzyXwJ+lTFXV9lChoBmgJaA9DCH/7OnCOvHFAlIaUUpRoFUuoaBZHQM8l87R4QjF1fZQoaAZoCWgPQwgBpaFGoVByQJSGlFKUaBVLiWgWR0DPJfci+tbLdX2UKGgGaAloD0MITDYebDGmZECUhpRSlGgVTegDaBZHQM8l+Ji7TUl1fZQoaAZoCWgPQwhDAkaXN6dvQJSGlFKUaBVLjmgWR0DPJfsSuhbodX2UKGgGaAloD0MIVoFaDF4Kc0CUhpRSlGgVS5doFkdAzyX+Hqu8snV9lChoBmgJaA9DCJyMKsN4W3NAlIaUUpRoFUuPaBZHQM8mBBE8aGZ1fZQoaAZoCWgPQwgNN+DzAzF0QJSGlFKUaBVLzGgWR0DPJgtSbYsedX2UKGgGaAloD0MIgjtQp3z5ckCUhpRSlGgVS7doFkdAzyYNUlzEJnV9lChoBmgJaA9DCFLt0/FYW3JAlIaUUpRoFUueaBZHQM8mDV1GLDR1fZQoaAZoCWgPQwh0mgXanQ10QJSGlFKUaBVLs2gWR0DPJhhI6KcedX2UKGgGaAloD0MIVRUaiCV1cUCUhpRSlGgVS6JoFkdAzyYY08eS0XV9lChoBmgJaA9DCAJiEi4kt3FAlIaUUpRoFUuTaBZHQM8mHtI065p1fZQoaAZoCWgPQwg7inPUEWRxQJSGlFKUaBVLlmgWR0DPJiI3tKI0dX2UKGgGaAloD0MIorjjTT4IdECUhpRSlGgVS7JoFkdAzyYipTdcjnV9lChoBmgJaA9DCJwwYTTrvHBAlIaUUpRoFUuYaBZHQM8mMbz9S/F1fZQoaAZoCWgPQwjx1Y7iHEt0QJSGlFKUaBVLtGgWR0DPJjq4tpVTdX2UKGgGaAloD0MIYvVHGEafckCUhpRSlGgVS7hoFkdAzyY8d4mkWXV9lChoBmgJaA9DCPxVgO+2U3FAlIaUUpRoFUuiaBZHQM8mPe5nUUh1fZQoaAZoCWgPQwgzNJ4IIltyQJSGlFKUaBVLsmgWR0DPJkCgM+eOdX2UKGgGaAloD0MIldOekvOsc0CUhpRSlGgVS7VoFkdAzyZDHDJlrnV9lChoBmgJaA9DCIuMDkhCJnJAlIaUUpRoFUuzaBZHQM8mR/vfCQ91fZQoaAZoCWgPQwinrRHBeO1zQJSGlFKUaBVLrGgWR0DPJktcv/R3dX2UKGgGaAloD0MIJ6CJsGECckCUhpRSlGgVS6FoFkdAzyZQHcDbJ3V9lChoBmgJaA9DCM3mcRhMJnNAlIaUUpRoFUu2aBZHQM8mVscQyyl1fZQoaAZoCWgPQwg6V5QSQnxxQJSGlFKUaBVLtWgWR0DPJlhv3rUtdX2UKGgGaAloD0MICDwwgLB4c0CUhpRSlGgVS6NoFkdAzyZdFvQ4THV9lChoBmgJaA9DCPDAAMIHH3JAlIaUUpRoFUuWaBZHQM8mYV/DtPZ1fZQoaAZoCWgPQwjmBkMdFulzQJSGlFKUaBVLsmgWR0DPJmK+tbLVdX2UKGgGaAloD0MIxJRIohcockCUhpRSlGgVS61oFkdAzyZm5ksjFHV9lChoBmgJaA9DCExvfy5a6nNAlIaUUpRoFUuvaBZHQM8matTLns91fZQoaAZoCWgPQwhlNzP6kXxyQJSGlFKUaBVLgmgWR0DPJm9XmvGIdX2UKGgGaAloD0MIUpyjjg7yckCUhpRSlGgVS5JoFkdAzyZ3RKpT/HVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 7416,
79
  "n_steps": 2048,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
  "dtype": "float32",
27
  "_shape": [
28
  8
 
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 46400000,
46
  "_total_timesteps": 50000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAAAQV7yF/s27wINOPgdLhr3WawI88t+6PgAAgD8AAIA/mhdivXgK8z1DMYU+10cIvzCGOT19+WU+AAAAAAAAAAAAiE484dCVus/BRbZRFDGxf46Gupt/YTUAAIA/AACAP2ZHYT6hJj4/o331PGaQN79POAw/XEMNvgAAAAAAAAAAmnjKPPa4SrplU469C8iOu9HZZzumo0o8AACAPwAAgD+aKTU7XO8NuqLRMDOOFDQvzH8KO64+0LMAAIA/AACAP0aHHT4Eqo0+KUm2viZJKb8tECk+Tm2kvgAAAAAAAAAAZmGiPFl3ej9qJnI9HYJ3vyNlrD17goo7AAAAAAAAAACambw4fuS0PznoFDwentE9STDMuGnrBrsAAAAAAAAAAFNNL76PEag/dn7tvkNxE7+1eu++wZ2bvgAAAAAAAAAAmmlAO1xrZLpugdOzz2NlL3zsh7rmWqczAACAPwAAgD+auWq671OJPmUkzjyEtiq/syCzPCpoizwAAAAAAAAAAACBmDwDPEG8u6QRvpAAiT39bNa7b7YTuwAAgD8AAIA/urhbvkcisD8WIxa/hdT4vqhCD78gaN6+AAAAAAAAAACAtQA9ZdFBP/Uvmz0P4Hy/+rr6PcPF3LwAAAAAAAAAAJqthTy4I7+7VYjlvby8Iz3VeiY9vxUHvgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAQAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
  },
65
  "_last_original_obs": null,
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": 0.07201024,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIwRn8/aKNckCUhpRSlIwBbJRLpYwBdJRHQNdumvQ4S6F1fZQoaAZoCWgPQwgFw7mGmWFzQJSGlFKUaBVLoWgWR0DXbps55qubdX2UKGgGaAloD0MIy5wuiwlYcUCUhpRSlGgVS6NoFkdA126bO0b963V9lChoBmgJaA9DCCKq8Gd413NAlIaUUpRoFUu3aBZHQNduo99c8kl1fZQoaAZoCWgPQwjO3hltFXpzQJSGlFKUaBVLtGgWR0DXbqQiwB5pdX2UKGgGaAloD0MIdQKaCJsPckCUhpRSlGgVS5NoFkdA126lrqMWGnV9lChoBmgJaA9DCCqsVFDR3nJAlIaUUpRoFUuCaBZHQNdup3sPatd1fZQoaAZoCWgPQwjbh7zlqmBxQJSGlFKUaBVLm2gWR0DXbquKUFB6dX2UKGgGaAloD0MI8j/5u/drcECUhpRSlGgVS51oFkdA126r2/BWP3V9lChoBmgJaA9DCF1Q3zInTHFAlIaUUpRoFUuWaBZHQNdurBBzFMt1fZQoaAZoCWgPQwiRRC+jmBFyQJSGlFKUaBVLoGgWR0DXbrfu2JBPdX2UKGgGaAloD0MILEme6zsMdECUhpRSlGgVS7toFkdA1266gQYk3XV9lChoBmgJaA9DCFSnA1mPuHJAlIaUUpRoFUuxaBZHQNduvZUtI091fZQoaAZoCWgPQwhODMnJBMZzQJSGlFKUaBVLqmgWR0DXbr6QA+6idX2UKGgGaAloD0MICM2ueytRUUCUhpRSlGgVS39oFkdA127CTyauwHV9lChoBmgJaA9DCMPVARA3F3NAlIaUUpRoFUuuaBZHQNduxGyHEdh1fZQoaAZoCWgPQwjW5v9VR/FyQJSGlFKUaBVLsmgWR0DXbsUhouf3dX2UKGgGaAloD0MIzhlR2tsac0CUhpRSlGgVS7loFkdA127HCVKPGXV9lChoBmgJaA9DCOXuc3w0fnBAlIaUUpRoFUvDaBZHQNduyKBEroZ1fZQoaAZoCWgPQwivsOB+gHZyQJSGlFKUaBVLj2gWR0DXbsnFZPl/dX2UKGgGaAloD0MINZvHYXCRckCUhpRSlGgVS69oFkdA127NmUW2w3V9lChoBmgJaA9DCFfuBWZFJHFAlIaUUpRoFUuSaBZHQNduzndweeZ1fZQoaAZoCWgPQwisONVaGDp0QJSGlFKUaBVLv2gWR0DXbtLL9uP4dX2UKGgGaAloD0MIBthHp277cECUhpRSlGgVS6VoFkdA127TSTQmeHV9lChoBmgJaA9DCJKU9DB0OnJAlIaUUpRoFUunaBZHQNdu05ON5t51fZQoaAZoCWgPQwi2SUVjLWRxQJSGlFKUaBVLqGgWR0DXbt/RIBikdX2UKGgGaAloD0MI7GzIP7PicECUhpRSlGgVS6NoFkdA127hKKHfuXV9lChoBmgJaA9DCOl942vPnlFAlIaUUpRoFUtUaBZHQNdu4XkT6BR1fZQoaAZoCWgPQwjrjsU2KSNxQJSGlFKUaBVLlmgWR0DXbuW+cpb2dX2UKGgGaAloD0MIml33ViSMdECUhpRSlGgVS69oFkdA127oPWxyGXV9lChoBmgJaA9DCO/nFOQnGHJAlIaUUpRoFUuqaBZHQNdu7P8qFyt1fZQoaAZoCWgPQwhuTbot0Vp0QJSGlFKUaBVLyWgWR0DXbu254GD+dX2UKGgGaAloD0MI9iSwOYc4cUCUhpRSlGgVS5loFkdA127uZ0CA+nV9lChoBmgJaA9DCDCDMSLRU3JAlIaUUpRoFUuxaBZHQNdu7029+PR1fZQoaAZoCWgPQwjdskP8Q0l0QJSGlFKUaBVLvGgWR0DXbvOlabF1dX2UKGgGaAloD0MIu9IyUu/lb0CUhpRSlGgVS41oFkdA1271QPI4l3V9lChoBmgJaA9DCBR3vMnvvnBAlIaUUpRoFUuoaBZHQNdu9qKLsKN1fZQoaAZoCWgPQwi5jnHFhRZ0QJSGlFKUaBVLxWgWR0DXbvdWuHN5dX2UKGgGaAloD0MIFCLgEKqnb0CUhpRSlGgVS5loFkdA1273m3fAK3V9lChoBmgJaA9DCEMaFTiZ/nJAlIaUUpRoFUu8aBZHQNdvAFRtP551fZQoaAZoCWgPQwhSRfEqq25xQJSGlFKUaBVLjmgWR0DXbwdyyUs4dX2UKGgGaAloD0MI+5XOh+eQcECUhpRSlGgVS6JoFkdA128H9Oymh3V9lChoBmgJaA9DCGYUyy1tzXFAlIaUUpRoFUuoaBZHQNdvCDqB3A51fZQoaAZoCWgPQwjQtS+g13ZzQJSGlFKUaBVLo2gWR0DXbwiIrOJMdX2UKGgGaAloD0MImpMXmUDkcECUhpRSlGgVS5RoFkdA128SRLK3eHV9lChoBmgJaA9DCC+jWG4pS3NAlIaUUpRoFUufaBZHQNdvEo9X9zh1fZQoaAZoCWgPQwhLyAc9m4BzQJSGlFKUaBVLu2gWR0DXbxSuX/o8dX2UKGgGaAloD0MIVHJO7OFecUCUhpRSlGgVS6doFkdA128V4mkWRHV9lChoBmgJaA9DCLqgvmUOp3NAlIaUUpRoFUu1aBZHQNdvGGpMpPR1fZQoaAZoCWgPQwhRaFn3D0xxQJSGlFKUaBVLpWgWR0DXbxqliz9kdX2UKGgGaAloD0MIdVq3QS00ckCUhpRSlGgVS6ZoFkdA128d1k1/D3V9lChoBmgJaA9DCKj/rPnxiXNAlIaUUpRoFUuzaBZHQNdvIcVk+X91fZQoaAZoCWgPQwhZiA6BI6dzQJSGlFKUaBVLv2gWR0DXbyKKm8/VdX2UKGgGaAloD0MIho4dVGLXc0CUhpRSlGgVS7toFkdA128j+T/yXnV9lChoBmgJaA9DCHdkrDZ/CnRAlIaUUpRoFUu4aBZHQNdvLDhYNiJ1fZQoaAZoCWgPQwiLxtrfmTNxQJSGlFKUaBVLpmgWR0DXby7W8RL9dX2UKGgGaAloD0MIg23Ek918cUCUhpRSlGgVS6xoFkdA128wvkili3V9lChoBmgJaA9DCBb8NsR4kHJAlIaUUpRoFUutaBZHQNdvMX+hoM91fZQoaAZoCWgPQwhv2LYoM45yQJSGlFKUaBVLsWgWR0DXbzIuK4x2dX2UKGgGaAloD0MIZaa0/pZhcECUhpRSlGgVS4toFkdA128zVmjCYXV9lChoBmgJaA9DCLwEpz5QH3JAlIaUUpRoFUuTaBZHQNdvOGahHsl1fZQoaAZoCWgPQwiCOuXRTb9yQJSGlFKUaBVLsmgWR0DXbz6f8MuwdX2UKGgGaAloD0MI6X5OQb4YdECUhpRSlGgVS8JoFkdA129AGnGbTnV9lChoBmgJaA9DCC3pKAdznHJAlIaUUpRoFUuvaBZHQNdvRCIgvDh1fZQoaAZoCWgPQwjhzoWR3vlpQJSGlFKUaBVN6ANoFkdA129FE61b7nV9lChoBmgJaA9DCH0+yohLYnRAlIaUUpRoFUu/aBZHQNdvRYcrAgx1fZQoaAZoCWgPQwjFxVG5iapzQJSGlFKUaBVLqGgWR0DXb0W6qbSadX2UKGgGaAloD0MIXtpwWJoEckCUhpRSlGgVS59oFkdA129HGbTc7HV9lChoBmgJaA9DCPTEc7aAIXJAlIaUUpRoFUvAaBZHQNdvTgKBuoB1fZQoaAZoCWgPQwiU+rK0kxdwQJSGlFKUaBVLvWgWR0DXb06zOX3QdX2UKGgGaAloD0MIP1WFBqLpcECUhpRSlGgVS51oFkdA129RoMKCx3V9lChoBmgJaA9DCA1Uxr/PAnJAlIaUUpRoFUuRaBZHQNdvUgNXo1V1fZQoaAZoCWgPQwhj0XR2MhByQJSGlFKUaBVLrGgWR0DXb1KCL/CJdX2UKGgGaAloD0MIPZzAdFoKc0CUhpRSlGgVS6FoFkdA129UGM4tH3V9lChoBmgJaA9DCKD+s+ZHcHNAlIaUUpRoFUu5aBZHQNdvWXo1UER1fZQoaAZoCWgPQwiqC3iZIWp0QJSGlFKUaBVLtGgWR0DXb1oKjSG8dX2UKGgGaAloD0MIKXrgY/DlcUCUhpRSlGgVS4VoFkdA129aOWBz3nV9lChoBmgJaA9DCLIQHQKHIXJAlIaUUpRoFUuoaBZHQNdvW/b0voN1fZQoaAZoCWgPQwi4j9yatC5xQJSGlFKUaBVLgWgWR0DXb13dsSCfdX2UKGgGaAloD0MIxM2pZEAlckCUhpRSlGgVS49oFkdA129hxCIDYHV9lChoBmgJaA9DCBR6/Um8Z3JAlIaUUpRoFUuKaBZHQNdvYl5OafB1fZQoaAZoCWgPQwga4e1BCHxzQJSGlFKUaBVLu2gWR0DXb2Yi2UjcdX2UKGgGaAloD0MIthMlIREHcECUhpRSlGgVS6xoFkdA129n8JUo8nV9lChoBmgJaA9DCDrpfeMrPnNAlIaUUpRoFUu8aBZHQNdvappi7TV1fZQoaAZoCWgPQwhH5pE/mOZxQJSGlFKUaBVLn2gWR0DXb26iwjdIdX2UKGgGaAloD0MIbvyJyoY1c0CUhpRSlGgVS6toFkdA129wbqyGBXV9lChoBmgJaA9DCA9Dq5MzJ3BAlIaUUpRoFUueaBZHQNdvcVD4QBh1fZQoaAZoCWgPQwicTx2rFG9zQJSGlFKUaBVLmmgWR0DXb3LufEn9dX2UKGgGaAloD0MIqODwgsiScUCUhpRSlGgVS4NoFkdA1290Z3LV4HV9lChoBmgJaA9DCGnjiLV4e3NAlIaUUpRoFUu3aBZHQNdvdqqjrRl1fZQoaAZoCWgPQwhMN4lB4PhyQJSGlFKUaBVLumgWR0DXb3e1twaSdX2UKGgGaAloD0MI2CssuB+pc0CUhpRSlGgVS6toFkdA1297kWykbnV9lChoBmgJaA9DCJoGRfMAt3BAlIaUUpRoFUumaBZHQNdvfSFK02N1fZQoaAZoCWgPQwizCTAs/xt0QJSGlFKUaBVLumgWR0DXb38NYr8SdX2UKGgGaAloD0MIVfmekcjWc0CUhpRSlGgVS7loFkdA12+C3LV4HHV9lChoBmgJaA9DCAO0rWZdG3BAlIaUUpRoFUuZaBZHQNdvhpCBwuN1fZQoaAZoCWgPQwj/y7VoQStxQJSGlFKUaBVLuGgWR0DXb4bTPSlWdX2UKGgGaAloD0MInYGRlzUuc0CUhpRSlGgVS7ZoFkdA12+HByS3b3V9lChoBmgJaA9DCD81XrpJmnBAlIaUUpRoFUumaBZHQNdvh3hXKbN1fZQoaAZoCWgPQwhoXg67LwZzQJSGlFKUaBVLr2gWR0DXcfhFocrBdWUu"
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 11328,
79
  "n_steps": 2048,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:9213f6339157f3d17c81bc6ab81530884a3e8edb76dd3209a2fb840c197b9044
3
  size 88057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd8c801edc4dd0029a80609abc2f30cdec653f0fc4a6c85fd17de9e5dce6c919
3
  size 88057
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:52fcd76f0d1a25d14038e9eafaba76565a925d21e0faf628c1529e7972fe9449
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52adf2a1f348457118569a72fb69079f72bd38a2d5dc8c2041e64b96b355e259
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 295.41860366602657, "std_reward": 20.879493310330588, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-16T20:23:23.610969"}
 
1
+ {"mean_reward": 301.6694277726888, "std_reward": 11.740726971732188, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-16T20:29:43.042210"}