utyug1 commited on
Commit
68b0605
·
1 Parent(s): b6f676a

Upload PPO LunarLander-v2 trained agent

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
- value: 292.63 +/- 22.17
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: LunarLander-v2
17
  metrics:
18
  - type: mean_reward
19
+ value: 295.42 +/- 20.88
20
  name: mean_reward
21
  verified: false
22
  ---
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb5bdac5a60>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5bdac5af0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb5bdac5b80>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5bdac5c10>", "_build": "<function ActorCriticPolicy._build at 0x7fb5bdac5ca0>", "forward": "<function ActorCriticPolicy.forward at 0x7fb5bdac5d30>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb5bdac5dc0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fb5bdac5e50>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb5bdac5ee0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb5bdac5f70>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb5bdaca040>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb5bdac3480>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 50003968, "_total_timesteps": 50000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671098673135392524, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANBPjT40YIY/+LeFPnV9KL9d5TE/rvuVPQAAAAAAAAAAWphPvkeKXz+3KgC+FhtDv8B1+76glsY8AAAAAAAAAABm9QS9Fl4PPcvS6z3Cs7K+OjYRvVQZCz0AAAAAAAAAAE3rVr3fCaU/gdMDvgqAF79G1b29pP8pvgAAAAAAAAAAAKz/u/ZYR7r+8G22cd5jsRfwBzuVJpE1AACAPwAAgD+aCzk84Xi4P7q0vD7POtg+uPfku1rbn7sAAAAAAAAAAADmC7z++IA9SnL/vWnMzr53Pdi9jp0avgAAAAAAAAAATXwSPaqTjz8XqMo9fyRRvzNQoD38wg8+AAAAAAAAAADzCaS9w7x+vKAWsD51+wE9DL3kPbiOzL0AAAAAAACAPzPzFruXK3s/kuXrO778eL93uTk9GIZbvQAAAAAAAAAAM4cOvGwMtz+mnlS+rN8wPiyqpjtavZ+8AAAAAAAAAACztZm9HH2nPufwwz00Tj6/wMkrvv320T0AAAAAAAAAAOZRKL5oWG0/B/2SvuaeUb96psq+CzKCvQAAAAAAAAAAQKugPo7RhD8mN3g+h6w3v3YNST+jOVG9AAAAAAAAAAAzSyo8j84OunpWELcGDgeyCOR0ujGwLTYAAIA/AACAP8005bvsScq7mtXOPVDThT0DuS69VG6lPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -7.935999999997279e-05, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIILjKEwhSckCUhpRSlIwBbJRLiIwBdJRHQNrSr1Tzd1x1fZQoaAZoCWgPQwjsLlBSoKxyQJSGlFKUaBVLvWgWR0Da0rAX1rZbdX2UKGgGaAloD0MIP+JXrGFAckCUhpRSlGgVS4doFkdA2tKyV1Oj7HV9lChoBmgJaA9DCCeDo+TVonFAlIaUUpRoFUuEaBZHQNrStydjG1h1fZQoaAZoCWgPQwhZTGw+bsFyQJSGlFKUaBVLl2gWR0Da0riAQQMAdX2UKGgGaAloD0MIMZV+wplXc0CUhpRSlGgVS5VoFkdA2tK/PfKp1nV9lChoBmgJaA9DCEMglzhyRXRAlIaUUpRoFUvDaBZHQNrSwc45tFd1fZQoaAZoCWgPQwioyCHiJqdwQJSGlFKUaBVLnWgWR0Da0sKoOx0NdX2UKGgGaAloD0MIrkm3JbKFc0CUhpRSlGgVS7poFkdA2tLTbXYlIHV9lChoBmgJaA9DCFK2SNoNE3JAlIaUUpRoFUuwaBZHQNrS1KdhAnl1fZQoaAZoCWgPQwjoobYNoydxQJSGlFKUaBVLoGgWR0Da0tWV9nbqdX2UKGgGaAloD0MIXaW762x+c0CUhpRSlGgVS7loFkdA2tLYwVCXyHV9lChoBmgJaA9DCC6PNSMDeXFAlIaUUpRoFUuuaBZHQNrS2w1vVEx1fZQoaAZoCWgPQwjW5ZSAGJVyQJSGlFKUaBVLrGgWR0Da0tukVN5/dX2UKGgGaAloD0MIzHucacI8c0CUhpRSlGgVS59oFkdA2tLcenQ6ZHV9lChoBmgJaA9DCJhPVgxX5XJAlIaUUpRoFUuwaBZHQNrS4EcsDnx1fZQoaAZoCWgPQwg51VqYRUBzQJSGlFKUaBVLs2gWR0Da0uRKcurZdX2UKGgGaAloD0MIisqGNZWVcUCUhpRSlGgVS41oFkdA2tLnQQtjC3V9lChoBmgJaA9DCOVC5V/LMnNAlIaUUpRoFUusaBZHQNrS6PN7jT91fZQoaAZoCWgPQwiE86ljFRxnQJSGlFKUaBVN6ANoFkdA2tLpQDV6NXV9lChoBmgJaA9DCLwFEhQ/HnJAlIaUUpRoFUvCaBZHQNrS7LdrO7h1fZQoaAZoCWgPQwiBBTBloAV0QJSGlFKUaBVLpGgWR0Da0u61Cw8odX2UKGgGaAloD0MI9Q63Q4MOc0CUhpRSlGgVS69oFkdA2tLxs6q82HV9lChoBmgJaA9DCFvOpbiqGnJAlIaUUpRoFUuEaBZHQNrS9e3DvVp1fZQoaAZoCWgPQwhbYfpeg4lwQJSGlFKUaBVLlGgWR0Da0vouL740dX2UKGgGaAloD0MIVd0jm6vncECUhpRSlGgVS5poFkdA2tL9/gzguXV9lChoBmgJaA9DCFaZKa1/JHRAlIaUUpRoFUuwaBZHQNrS/vv4M4N1fZQoaAZoCWgPQwhPXfksT/JvQJSGlFKUaBVLkGgWR0Da0wH50r9VdX2UKGgGaAloD0MIYhIu5BFMckCUhpRSlGgVS59oFkdA2tMCNu+AVnV9lChoBmgJaA9DCD9YxobutnBAlIaUUpRoFUujaBZHQNrTAnbEgnt1fZQoaAZoCWgPQwjG3osv2oBzQJSGlFKUaBVLs2gWR0Da0wWJ79hrdX2UKGgGaAloD0MI5usy/CfjcUCUhpRSlGgVS6FoFkdA2tMLkAPuonV9lChoBmgJaA9DCB/WG7VC/XJAlIaUUpRoFUuxaBZHQNrTDMafjCJ1fZQoaAZoCWgPQwj7sUl+BB50QJSGlFKUaBVLomgWR0Da0w1oysS1dX2UKGgGaAloD0MIbjMV4tE9ckCUhpRSlGgVS6JoFkdA2tMQ4YaYNXV9lChoBmgJaA9DCOHvF7MloHJAlIaUUpRoFUu5aBZHQNrTEkJng511fZQoaAZoCWgPQwhMUplizudzQJSGlFKUaBVLrWgWR0Da0xVruYx+dX2UKGgGaAloD0MI5UNQNXrSZUCUhpRSlGgVTegDaBZHQNrTF0KVpsZ1fZQoaAZoCWgPQwgb8WQ3s65zQJSGlFKUaBVLuGgWR0Da0xrbypaSdX2UKGgGaAloD0MI+HE0RxZLc0CUhpRSlGgVS7JoFkdA2tMdsrd30XV9lChoBmgJaA9DCIXpew0BMHFAlIaUUpRoFUuqaBZHQNrTICQcPvt1fZQoaAZoCWgPQwjwwADCh/BzQJSGlFKUaBVLqWgWR0Da0yODIzWPdX2UKGgGaAloD0MIA5Xx73OXckCUhpRSlGgVS7ZoFkdA2tMnSkTHsHV9lChoBmgJaA9DCHgI46fxt3JAlIaUUpRoFUuwaBZHQNrTKVLJ0XB1fZQoaAZoCWgPQwhSKAtfX2FzQJSGlFKUaBVLtGgWR0Da0yoGorFwdX2UKGgGaAloD0MI0qjAyXbSc0CUhpRSlGgVS8VoFkdA2tMteU6gd3V9lChoBmgJaA9DCG6I8ZqXd3JAlIaUUpRoFUunaBZHQNrTMEYj0MB1fZQoaAZoCWgPQwiY++QoQJNxQJSGlFKUaBVLrmgWR0Da0zMLQXyidX2UKGgGaAloD0MI31D4bB0Kc0CUhpRSlGgVS4xoFkdA2tM0HwPRRnV9lChoBmgJaA9DCPlOzHrx53NAlIaUUpRoFUujaBZHQNrTNM4DLbJ1fZQoaAZoCWgPQwhAhLhy9ph0QJSGlFKUaBVL2mgWR0Da0zWx8lXzdX2UKGgGaAloD0MINPJ5xZMXc0CUhpRSlGgVS8FoFkdA2tM3yprDZXV9lChoBmgJaA9DCMHEH0Vd4HNAlIaUUpRoFUu6aBZHQNrTOs6/7BR1fZQoaAZoCWgPQwh9JCU9DMJwQJSGlFKUaBVLnGgWR0Da0zyYXwb3dX2UKGgGaAloD0MI04OCUvTkc0CUhpRSlGgVS79oFkdA2tNATQVsUXV9lChoBmgJaA9DCGUcI9kjAnNAlIaUUpRoFUumaBZHQNrTQUvwmVt1fZQoaAZoCWgPQwhZNQhzOyNyQJSGlFKUaBVLomgWR0Da00KzollcdX2UKGgGaAloD0MITwRxHs6ZcUCUhpRSlGgVS4poFkdA2tNGO1fE43V9lChoBmgJaA9DCPz89+A1iHJAlIaUUpRoFUu7aBZHQNrTSvrSmZV1fZQoaAZoCWgPQwj/A6xVuxxMQJSGlFKUaBVLb2gWR0Da00xKRMewdX2UKGgGaAloD0MIYkz6e6meckCUhpRSlGgVS5ZoFkdA2tNM1yvLYHV9lChoBmgJaA9DCKaZ7nXS73FAlIaUUpRoFUu6aBZHQNrTTofGMn91fZQoaAZoCWgPQwi46c9+5ERzQJSGlFKUaBVLsWgWR0Da0084//vOdX2UKGgGaAloD0MI/KawUsHEc0CUhpRSlGgVS6RoFkdA2tNU/m1YyXV9lChoBmgJaA9DCNswCoIHkXJAlIaUUpRoFUunaBZHQNrTVqjrRjV1fZQoaAZoCWgPQwglrfiGAvVzQJSGlFKUaBVLqWgWR0Da01rcclw+dX2UKGgGaAloD0MISnuDL4yqcUCUhpRSlGgVS5ZoFkdA2tNb+0PYnXV9lChoBmgJaA9DCBVUVP0K8XJAlIaUUpRoFUu9aBZHQNrTXDodMkB1fZQoaAZoCWgPQwiJXHAGf5pzQJSGlFKUaBVL1mgWR0Da011jBl+WdX2UKGgGaAloD0MIPzc0ZecDc0CUhpRSlGgVS65oFkdA2tNmR5C4SnV9lChoBmgJaA9DCHtq9dUVznJAlIaUUpRoFUu3aBZHQNrTZzXWe6J1fZQoaAZoCWgPQwg6AyMv63ZwQJSGlFKUaBVLp2gWR0Da02pJRO1wdX2UKGgGaAloD0MI4C77daeQc0CUhpRSlGgVS+JoFkdA2tNqu5SWJXV9lChoBmgJaA9DCI3ttaD3pnRAlIaUUpRoFUvBaBZHQNrTbA3kxRF1fZQoaAZoCWgPQwhuhbAaCyhzQJSGlFKUaBVLn2gWR0Da021wn6VMdX2UKGgGaAloD0MIW3heKjZkc0CUhpRSlGgVS6poFkdA2tNxWkrPMXV9lChoBmgJaA9DCOif4GIFSnJAlIaUUpRoFUujaBZHQNrTcYZhrnF1fZQoaAZoCWgPQwhtAaH1sE1zQJSGlFKUaBVLr2gWR0Da03HsAvL6dX2UKGgGaAloD0MI9b7xtecWdECUhpRSlGgVS7toFkdA2tN25Rjz7XV9lChoBmgJaA9DCCbGMv1S2XFAlIaUUpRoFUucaBZHQNrTd9u+AVh1fZQoaAZoCWgPQwgipdk8zgByQJSGlFKUaBVLqWgWR0Da03jlOoHcdX2UKGgGaAloD0MIQNmUKzwDckCUhpRSlGgVS4poFkdA2tN5MfigkHV9lChoBmgJaA9DCGk6OxkcLXFAlIaUUpRoFUuiaBZHQNrTfv3N9ph1fZQoaAZoCWgPQwgKaY1Bp7RyQJSGlFKUaBVLs2gWR0Da04BDF6zFdX2UKGgGaAloD0MIR3U6kLUjdECUhpRSlGgVS7FoFkdA2tOA3y7PIHV9lChoBmgJaA9DCPol4q3zlXJAlIaUUpRoFUufaBZHQNrTh6f8Mux1fZQoaAZoCWgPQwhCz2bVZ6xxQJSGlFKUaBVLpmgWR0Da04hKDkELdX2UKGgGaAloD0MI14hgHNzicECUhpRSlGgVS5poFkdA2tOJoMKCx3V9lChoBmgJaA9DCOjB3Vk7X3BAlIaUUpRoFUuGaBZHQNrTjUAPuoh1fZQoaAZoCWgPQwj3V4/71plzQJSGlFKUaBVLqmgWR0Da047k92X+dX2UKGgGaAloD0MI5sx2hX7Uc0CUhpRSlGgVS8RoFkdA2tOTLiMo+nV9lChoBmgJaA9DCPYNTG5UKnRAlIaUUpRoFUvEaBZHQNrTldgjQiR1fZQoaAZoCWgPQwgriIGuvWJyQJSGlFKUaBVLsmgWR0Da05Yq5LAYdX2UKGgGaAloD0MIHAdeLfdvckCUhpRSlGgVS5FoFkdA2tOXJZ4fOnV9lChoBmgJaA9DCFkZjXxeKnRAlIaUUpRoFUu9aBZHQNrTmHocJdB1fZQoaAZoCWgPQwi4HRoWY6dyQJSGlFKUaBVLm2gWR0Da05lqEeySdX2UKGgGaAloD0MICD4GK054cUCUhpRSlGgVS6xoFkdA2tOacmShanV9lChoBmgJaA9DCPbuj/cqAnRAlIaUUpRoFUuraBZHQNrTmy5AhSt1fZQoaAZoCWgPQwjChNGs7KlyQJSGlFKUaBVLmmgWR0Da05+nGbTddX2UKGgGaAloD0MIymyQSUa4bkCUhpRSlGgVS6FoFkdA2tOf56t1ZHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 12208, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ob21lL2JvcmlzLnVzdHl1Z292L21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2hvbWUvYm9yaXMudXN0eXVnb3YvbWluaWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f973a541310>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973a5413a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973a541430>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973a5414c0>", "_build": "<function ActorCriticPolicy._build at 0x7f973a541550>", "forward": "<function ActorCriticPolicy.forward at 0x7f973a5415e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973a541670>", "_predict": "<function ActorCriticPolicy._predict at 0x7f973a541700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973a541790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973a541820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973a5418b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f973a539cc0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 30400000, "_total_timesteps": 50000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671197502396425412, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbjjT1VERU+Dmlvvo4dDr+F9zo9YDcyvgAAAAAAAAAADQ2avWEvjbzZzac+Z4Aivn/lGr1wGEq/AACAPwAAgD8zA8i7j+ZBuoPlbLagWFix9C2aOS2BkTUAAIA/AACAP5plhDyuQ6m6fQ3dPa/6hT3sbLk7Kt9FugAAgD8AAIA/ZmaXOxRwiLol660zkDc1MI1aPbpQILOzAACAPwAAgD8Aflc9Q0YtvGLwVL47NK67jhLLu1u8vb0AAIA/AACAP6bk+b3JIQ0/Iid2PaWCRL/ixYC+OHDxPQAAAAAAAAAAWhslvtJxpz8lBKC+49szvyP6xL7zkZK+AAAAAAAAAABm02g9sELoPqxdqrwPtjy/s2UhPtteb70AAAAAAAAAAM1g9buuD5u6r+2ZPccLDbYMgfS6Zp4GtQAAgD8AAIA/ja2jPUjUnD9C4ls+8z0uv5jNmj4aBmA+AAAAAAAAAABmIFi8w3BOO8LNh73thjO+JuHyvX7/Jz8AAIA/AAAAALMSG74txUk+QPHfPvuRKL+VDDI9flKZPgAAAAAAAAAATbwQPXHMZ7v1J1q8cvd2PKEG2zy69lS9AACAPwAAgD/NreS83N+pP0UOJr5k/OC++MQpvXTGSL4AAAAAAAAAAOZXV732uAc/cBNiPOByUL+UA++9m8hrPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.39248128000000004, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkWEVb2Qbc0CUhpRSlIwBbJRLyIwBdJRHQM8kqzd+G491fZQoaAZoCWgPQwidLouJjRRyQJSGlFKUaBVLqGgWR0DPJK2OsDGMdX2UKGgGaAloD0MIAU2EDU+EckCUhpRSlGgVS7RoFkdAzyS3eNT99HV9lChoBmgJaA9DCLhc/dgkg3JAlIaUUpRoFUucaBZHQM8kyOkDZDl1fZQoaAZoCWgPQwgCEk2gCN1yQJSGlFKUaBVLvWgWR0DPJMlstTUBdX2UKGgGaAloD0MIjBU1mEZ0dECUhpRSlGgVS6xoFkdAzyTOhje9BnV9lChoBmgJaA9DCGed8X0xzHNAlIaUUpRoFUu4aBZHQM8k0Oez2OB1fZQoaAZoCWgPQwg/VBoxM7tzQJSGlFKUaBVLuGgWR0DPJN1mJ3xGdX2UKGgGaAloD0MI5s5MMBz6cECUhpRSlGgVS6JoFkdAzyTg7r9l3HV9lChoBmgJaA9DCKSOjquRqHFAlIaUUpRoFUuMaBZHQM8k5021lXl1fZQoaAZoCWgPQwg/j1GeeSh0QJSGlFKUaBVLwmgWR0DPJPB0EHMVdX2UKGgGaAloD0MI5MCr5U4ldECUhpRSlGgVS8ZoFkdAzyT0elKsdXV9lChoBmgJaA9DCIY8ghspgnBAlIaUUpRoFUuwaBZHQM8k9ejEehh1fZQoaAZoCWgPQwjEswQZgWFzQJSGlFKUaBVLoGgWR0DPJPb2rXDndX2UKGgGaAloD0MIKc5RR8d4c0CUhpRSlGgVS6xoFkdAzyT6CyyD7XV9lChoBmgJaA9DCNNsHofBi3JAlIaUUpRoFUv0aBZHQM8k/jFZPmB1fZQoaAZoCWgPQwjJ/+TvHhdzQJSGlFKUaBVNFAFoFkdAzyT+p6QeWHV9lChoBmgJaA9DCH0FacYi2HNAlIaUUpRoFUuwaBZHQM8lB2BBiTd1fZQoaAZoCWgPQwjDnKBNTi5yQJSGlFKUaBVLgmgWR0DPJQqsySFHdX2UKGgGaAloD0MIc0f/y7XycECUhpRSlGgVS59oFkdAzyUUcmShanV9lChoBmgJaA9DCK8nui78snJAlIaUUpRoFUusaBZHQM8lFQOe8PF1fZQoaAZoCWgPQwhwtOOGX3NzQJSGlFKUaBVLvGgWR0DPJRwPuogndX2UKGgGaAloD0MIprVpbO9ycUCUhpRSlGgVS55oFkdAzyUiBFuvU3V9lChoBmgJaA9DCB3HD5XGOnNAlIaUUpRoFUuqaBZHQM8lKooE0SB1fZQoaAZoCWgPQwg8okJ1M8xyQJSGlFKUaBVLkWgWR0DPJS3l6qsEdX2UKGgGaAloD0MIfqt14rKcckCUhpRSlGgVS4toFkdAzyUuxzJZGXV9lChoBmgJaA9DCHlA2ZQrhG9AlIaUUpRoFUuSaBZHQM8lMsA3kxR1fZQoaAZoCWgPQwjk1qTbEnZzQJSGlFKUaBVLuGgWR0DPJTX4mCyydX2UKGgGaAloD0MIxhhYx/FLcECUhpRSlGgVS5loFkdAzyU2l+EytXV9lChoBmgJaA9DCCuGqwOglnFAlIaUUpRoFUunaBZHQM8lPprtVrB1fZQoaAZoCWgPQwj8prBSQXNvQJSGlFKUaBVLmmgWR0DPJUcLQXyidX2UKGgGaAloD0MIPiZSmg3zc0CUhpRSlGgVS7VoFkdAzyVIlwcYInV9lChoBmgJaA9DCP922a97qXNAlIaUUpRoFUu3aBZHQM8lSd+G47R1fZQoaAZoCWgPQwjjOPBqOTxyQJSGlFKUaBVLo2gWR0DPJU5B5X2edX2UKGgGaAloD0MIPudu10tLb0CUhpRSlGgVS5NoFkdAzyVR3pOernV9lChoBmgJaA9DCHALluqCvXBAlIaUUpRoFUusaBZHQM8lYzNMXad1fZQoaAZoCWgPQwjaqbncoNdzQJSGlFKUaBVLwGgWR0DPJWQPmPo3dX2UKGgGaAloD0MIXd2x2GbUcECUhpRSlGgVS4VoFkdAzyVkpT/ACXV9lChoBmgJaA9DCPJ376hx/HJAlIaUUpRoFUuiaBZHQM8lZSeAd4p1fZQoaAZoCWgPQwi+oIUEjJpwQJSGlFKUaBVLlWgWR0DPJWfxUedTdX2UKGgGaAloD0MIIk+SrhnAcECUhpRSlGgVS6BoFkdAzyVwPtD2J3V9lChoBmgJaA9DCBHEeTiB3URAlIaUUpRoFUtraBZHQM8ldHsLORl1fZQoaAZoCWgPQwg2zTtOEZpyQJSGlFKUaBVLomgWR0DPJXiC6H0sdX2UKGgGaAloD0MIfhr35rdBckCUhpRSlGgVS7poFkdAzyV/YwIt2HV9lChoBmgJaA9DCG8RGOsbzHBAlIaUUpRoFUuhaBZHQM8lgaxPfsN1fZQoaAZoCWgPQwj2tpkKMQhzQJSGlFKUaBVLvGgWR0DPJYSC+UQkdX2UKGgGaAloD0MISino9pJ9cECUhpRSlGgVS45oFkdAzyWE8qWkanV9lChoBmgJaA9DCPmHLT2afkFAlIaUUpRoFUtfaBZHQM8ljL876pJ1fZQoaAZoCWgPQwhFEOfhBAZzQJSGlFKUaBVLtmgWR0DPJZLUAks0dX2UKGgGaAloD0MIfH2tSw05ckCUhpRSlGgVS69oFkdAzyWXJf6XSnV9lChoBmgJaA9DCIQqNXug33FAlIaUUpRoFUu6aBZHQM8ln938n/l1fZQoaAZoCWgPQwjFHtrHCtZwQJSGlFKUaBVLpGgWR0DPJajYwqRVdX2UKGgGaAloD0MIqaCi6tdJckCUhpRSlGgVS6RoFkdAzyWpzQu27XV9lChoBmgJaA9DCMf0hCUeMXNAlIaUUpRoFUumaBZHQM8lqz4L1Ep1fZQoaAZoCWgPQwjVz5uK1G9yQJSGlFKUaBVLtGgWR0DPJbTEUCaJdX2UKGgGaAloD0MIqJAr9ezkcUCUhpRSlGgVS5xoFkdAzyW8L0BfbHV9lChoBmgJaA9DCHWPbK5aO3RAlIaUUpRoFUuzaBZHQM8lvZZ8rqd1fZQoaAZoCWgPQwiU3je+dhhzQJSGlFKUaBVLqmgWR0DPJb4cWCVbdX2UKGgGaAloD0MIQieEDvr4cECUhpRSlGgVS5VoFkdAzyXACBf8dnV9lChoBmgJaA9DCGuBPSZSd3JAlIaUUpRoFUuHaBZHQM8lxvLHMll1fZQoaAZoCWgPQwjWGkrtBTdyQJSGlFKUaBVLqWgWR0DPJco2CNCJdX2UKGgGaAloD0MI64zviwshckCUhpRSlGgVS6loFkdAzyXNOryUcHV9lChoBmgJaA9DCHy1oziHWnNAlIaUUpRoFUu8aBZHQM8l1Ny5qdp1fZQoaAZoCWgPQwih+DHmbkZxQJSGlFKUaBVLoWgWR0DPJdg+MZP3dX2UKGgGaAloD0MIcoi4ORUrcUCUhpRSlGgVS61oFkdAzyXiBun/DXV9lChoBmgJaA9DCG9FYoKay3JAlIaUUpRoFUueaBZHQM8l5DnNgSh1fZQoaAZoCWgPQwjzrnrA/PZxQJSGlFKUaBVLpWgWR0DPJfAkJKJ3dX2UKGgGaAloD0MIsDkHzwSBcUCUhpRSlGgVS6NoFkdAzyXwJ+lTFXV9lChoBmgJaA9DCH/7OnCOvHFAlIaUUpRoFUuoaBZHQM8l87R4QjF1fZQoaAZoCWgPQwgBpaFGoVByQJSGlFKUaBVLiWgWR0DPJfci+tbLdX2UKGgGaAloD0MITDYebDGmZECUhpRSlGgVTegDaBZHQM8l+Ji7TUl1fZQoaAZoCWgPQwhDAkaXN6dvQJSGlFKUaBVLjmgWR0DPJfsSuhbodX2UKGgGaAloD0MIVoFaDF4Kc0CUhpRSlGgVS5doFkdAzyX+Hqu8snV9lChoBmgJaA9DCJyMKsN4W3NAlIaUUpRoFUuPaBZHQM8mBBE8aGZ1fZQoaAZoCWgPQwgNN+DzAzF0QJSGlFKUaBVLzGgWR0DPJgtSbYsedX2UKGgGaAloD0MIgjtQp3z5ckCUhpRSlGgVS7doFkdAzyYNUlzEJnV9lChoBmgJaA9DCFLt0/FYW3JAlIaUUpRoFUueaBZHQM8mDV1GLDR1fZQoaAZoCWgPQwh0mgXanQ10QJSGlFKUaBVLs2gWR0DPJhhI6KcedX2UKGgGaAloD0MIVRUaiCV1cUCUhpRSlGgVS6JoFkdAzyYY08eS0XV9lChoBmgJaA9DCAJiEi4kt3FAlIaUUpRoFUuTaBZHQM8mHtI065p1fZQoaAZoCWgPQwg7inPUEWRxQJSGlFKUaBVLlmgWR0DPJiI3tKI0dX2UKGgGaAloD0MIorjjTT4IdECUhpRSlGgVS7JoFkdAzyYipTdcjnV9lChoBmgJaA9DCJwwYTTrvHBAlIaUUpRoFUuYaBZHQM8mMbz9S/F1fZQoaAZoCWgPQwjx1Y7iHEt0QJSGlFKUaBVLtGgWR0DPJjq4tpVTdX2UKGgGaAloD0MIYvVHGEafckCUhpRSlGgVS7hoFkdAzyY8d4mkWXV9lChoBmgJaA9DCPxVgO+2U3FAlIaUUpRoFUuiaBZHQM8mPe5nUUh1fZQoaAZoCWgPQwgzNJ4IIltyQJSGlFKUaBVLsmgWR0DPJkCgM+eOdX2UKGgGaAloD0MIldOekvOsc0CUhpRSlGgVS7VoFkdAzyZDHDJlrnV9lChoBmgJaA9DCIuMDkhCJnJAlIaUUpRoFUuzaBZHQM8mR/vfCQ91fZQoaAZoCWgPQwinrRHBeO1zQJSGlFKUaBVLrGgWR0DPJktcv/R3dX2UKGgGaAloD0MIJ6CJsGECckCUhpRSlGgVS6FoFkdAzyZQHcDbJ3V9lChoBmgJaA9DCM3mcRhMJnNAlIaUUpRoFUu2aBZHQM8mVscQyyl1fZQoaAZoCWgPQwg6V5QSQnxxQJSGlFKUaBVLtWgWR0DPJlhv3rUtdX2UKGgGaAloD0MICDwwgLB4c0CUhpRSlGgVS6NoFkdAzyZdFvQ4THV9lChoBmgJaA9DCPDAAMIHH3JAlIaUUpRoFUuWaBZHQM8mYV/DtPZ1fZQoaAZoCWgPQwjmBkMdFulzQJSGlFKUaBVLsmgWR0DPJmK+tbLVdX2UKGgGaAloD0MIxJRIohcockCUhpRSlGgVS61oFkdAzyZm5ksjFHV9lChoBmgJaA9DCExvfy5a6nNAlIaUUpRoFUuvaBZHQM8matTLns91fZQoaAZoCWgPQwhlNzP6kXxyQJSGlFKUaBVLgmgWR0DPJm9XmvGIdX2UKGgGaAloD0MIUpyjjg7yckCUhpRSlGgVS5JoFkdAzyZ3RKpT/HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 7416, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVCQMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMay9ob21lL2JvcmlzLnVzdHl1Z292L21pbmljb25kYTMvZW52cy9kZWVwX3JsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCBAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxrL2hvbWUvYm9yaXMudXN0eXVnb3YvbWluaWNvbmRhMy9lbnZzL2RlZXBfcmwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:feeffba87b24da434721c4cc201b46291c2970df7495c46d84e8a906e1702aa7
3
- size 147316
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1c533c5cecb8b485a89b399247bc40abe6bc733934b819aad87591c5cecffd43
3
+ size 147328
ppo-LunarLander-v2/data CHANGED
@@ -4,25 +4,25 @@
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
- "__init__": "<function ActorCriticPolicy.__init__ at 0x7fb5bdac5a60>",
8
- "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fb5bdac5af0>",
9
- "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fb5bdac5b80>",
10
- "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fb5bdac5c10>",
11
- "_build": "<function ActorCriticPolicy._build at 0x7fb5bdac5ca0>",
12
- "forward": "<function ActorCriticPolicy.forward at 0x7fb5bdac5d30>",
13
- "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fb5bdac5dc0>",
14
- "_predict": "<function ActorCriticPolicy._predict at 0x7fb5bdac5e50>",
15
- "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fb5bdac5ee0>",
16
- "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fb5bdac5f70>",
17
- "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fb5bdaca040>",
18
  "__abstractmethods__": "frozenset()",
19
- "_abc_impl": "<_abc_data object at 0x7fb5bdac3480>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
- ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
  "dtype": "float32",
27
  "_shape": [
28
  8
@@ -35,19 +35,19 @@
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
- ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
  "n": 4,
40
  "_shape": [],
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
- "num_timesteps": 50003968,
46
  "_total_timesteps": 50000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
- "start_time": 1671098673135392524,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
@@ -56,7 +56,7 @@
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
- ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANBPjT40YIY/+LeFPnV9KL9d5TE/rvuVPQAAAAAAAAAAWphPvkeKXz+3KgC+FhtDv8B1+76glsY8AAAAAAAAAABm9QS9Fl4PPcvS6z3Cs7K+OjYRvVQZCz0AAAAAAAAAAE3rVr3fCaU/gdMDvgqAF79G1b29pP8pvgAAAAAAAAAAAKz/u/ZYR7r+8G22cd5jsRfwBzuVJpE1AACAPwAAgD+aCzk84Xi4P7q0vD7POtg+uPfku1rbn7sAAAAAAAAAAADmC7z++IA9SnL/vWnMzr53Pdi9jp0avgAAAAAAAAAATXwSPaqTjz8XqMo9fyRRvzNQoD38wg8+AAAAAAAAAADzCaS9w7x+vKAWsD51+wE9DL3kPbiOzL0AAAAAAACAPzPzFruXK3s/kuXrO778eL93uTk9GIZbvQAAAAAAAAAAM4cOvGwMtz+mnlS+rN8wPiyqpjtavZ+8AAAAAAAAAACztZm9HH2nPufwwz00Tj6/wMkrvv320T0AAAAAAAAAAOZRKL5oWG0/B/2SvuaeUb96psq+CzKCvQAAAAAAAAAAQKugPo7RhD8mN3g+h6w3v3YNST+jOVG9AAAAAAAAAAAzSyo8j84OunpWELcGDgeyCOR0ujGwLTYAAIA/AACAP8005bvsScq7mtXOPVDThT0DuS69VG6lPAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
@@ -66,16 +66,16 @@
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
- "_current_progress_remaining": -7.935999999997279e-05,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
- ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIILjKEwhSckCUhpRSlIwBbJRLiIwBdJRHQNrSr1Tzd1x1fZQoaAZoCWgPQwjsLlBSoKxyQJSGlFKUaBVLvWgWR0Da0rAX1rZbdX2UKGgGaAloD0MIP+JXrGFAckCUhpRSlGgVS4doFkdA2tKyV1Oj7HV9lChoBmgJaA9DCCeDo+TVonFAlIaUUpRoFUuEaBZHQNrStydjG1h1fZQoaAZoCWgPQwhZTGw+bsFyQJSGlFKUaBVLl2gWR0Da0riAQQMAdX2UKGgGaAloD0MIMZV+wplXc0CUhpRSlGgVS5VoFkdA2tK/PfKp1nV9lChoBmgJaA9DCEMglzhyRXRAlIaUUpRoFUvDaBZHQNrSwc45tFd1fZQoaAZoCWgPQwioyCHiJqdwQJSGlFKUaBVLnWgWR0Da0sKoOx0NdX2UKGgGaAloD0MIrkm3JbKFc0CUhpRSlGgVS7poFkdA2tLTbXYlIHV9lChoBmgJaA9DCFK2SNoNE3JAlIaUUpRoFUuwaBZHQNrS1KdhAnl1fZQoaAZoCWgPQwjoobYNoydxQJSGlFKUaBVLoGgWR0Da0tWV9nbqdX2UKGgGaAloD0MIXaW762x+c0CUhpRSlGgVS7loFkdA2tLYwVCXyHV9lChoBmgJaA9DCC6PNSMDeXFAlIaUUpRoFUuuaBZHQNrS2w1vVEx1fZQoaAZoCWgPQwjW5ZSAGJVyQJSGlFKUaBVLrGgWR0Da0tukVN5/dX2UKGgGaAloD0MIzHucacI8c0CUhpRSlGgVS59oFkdA2tLcenQ6ZHV9lChoBmgJaA9DCJhPVgxX5XJAlIaUUpRoFUuwaBZHQNrS4EcsDnx1fZQoaAZoCWgPQwg51VqYRUBzQJSGlFKUaBVLs2gWR0Da0uRKcurZdX2UKGgGaAloD0MIisqGNZWVcUCUhpRSlGgVS41oFkdA2tLnQQtjC3V9lChoBmgJaA9DCOVC5V/LMnNAlIaUUpRoFUusaBZHQNrS6PN7jT91fZQoaAZoCWgPQwiE86ljFRxnQJSGlFKUaBVN6ANoFkdA2tLpQDV6NXV9lChoBmgJaA9DCLwFEhQ/HnJAlIaUUpRoFUvCaBZHQNrS7LdrO7h1fZQoaAZoCWgPQwiBBTBloAV0QJSGlFKUaBVLpGgWR0Da0u61Cw8odX2UKGgGaAloD0MI9Q63Q4MOc0CUhpRSlGgVS69oFkdA2tLxs6q82HV9lChoBmgJaA9DCFvOpbiqGnJAlIaUUpRoFUuEaBZHQNrS9e3DvVp1fZQoaAZoCWgPQwhbYfpeg4lwQJSGlFKUaBVLlGgWR0Da0vouL740dX2UKGgGaAloD0MIVd0jm6vncECUhpRSlGgVS5poFkdA2tL9/gzguXV9lChoBmgJaA9DCFaZKa1/JHRAlIaUUpRoFUuwaBZHQNrS/vv4M4N1fZQoaAZoCWgPQwhPXfksT/JvQJSGlFKUaBVLkGgWR0Da0wH50r9VdX2UKGgGaAloD0MIYhIu5BFMckCUhpRSlGgVS59oFkdA2tMCNu+AVnV9lChoBmgJaA9DCD9YxobutnBAlIaUUpRoFUujaBZHQNrTAnbEgnt1fZQoaAZoCWgPQwjG3osv2oBzQJSGlFKUaBVLs2gWR0Da0wWJ79hrdX2UKGgGaAloD0MI5usy/CfjcUCUhpRSlGgVS6FoFkdA2tMLkAPuonV9lChoBmgJaA9DCB/WG7VC/XJAlIaUUpRoFUuxaBZHQNrTDMafjCJ1fZQoaAZoCWgPQwj7sUl+BB50QJSGlFKUaBVLomgWR0Da0w1oysS1dX2UKGgGaAloD0MIbjMV4tE9ckCUhpRSlGgVS6JoFkdA2tMQ4YaYNXV9lChoBmgJaA9DCOHvF7MloHJAlIaUUpRoFUu5aBZHQNrTEkJng511fZQoaAZoCWgPQwhMUplizudzQJSGlFKUaBVLrWgWR0Da0xVruYx+dX2UKGgGaAloD0MI5UNQNXrSZUCUhpRSlGgVTegDaBZHQNrTF0KVpsZ1fZQoaAZoCWgPQwgb8WQ3s65zQJSGlFKUaBVLuGgWR0Da0xrbypaSdX2UKGgGaAloD0MI+HE0RxZLc0CUhpRSlGgVS7JoFkdA2tMdsrd30XV9lChoBmgJaA9DCIXpew0BMHFAlIaUUpRoFUuqaBZHQNrTICQcPvt1fZQoaAZoCWgPQwjwwADCh/BzQJSGlFKUaBVLqWgWR0Da0yODIzWPdX2UKGgGaAloD0MIA5Xx73OXckCUhpRSlGgVS7ZoFkdA2tMnSkTHsHV9lChoBmgJaA9DCHgI46fxt3JAlIaUUpRoFUuwaBZHQNrTKVLJ0XB1fZQoaAZoCWgPQwhSKAtfX2FzQJSGlFKUaBVLtGgWR0Da0yoGorFwdX2UKGgGaAloD0MI0qjAyXbSc0CUhpRSlGgVS8VoFkdA2tMteU6gd3V9lChoBmgJaA9DCG6I8ZqXd3JAlIaUUpRoFUunaBZHQNrTMEYj0MB1fZQoaAZoCWgPQwiY++QoQJNxQJSGlFKUaBVLrmgWR0Da0zMLQXyidX2UKGgGaAloD0MI31D4bB0Kc0CUhpRSlGgVS4xoFkdA2tM0HwPRRnV9lChoBmgJaA9DCPlOzHrx53NAlIaUUpRoFUujaBZHQNrTNM4DLbJ1fZQoaAZoCWgPQwhAhLhy9ph0QJSGlFKUaBVL2mgWR0Da0zWx8lXzdX2UKGgGaAloD0MINPJ5xZMXc0CUhpRSlGgVS8FoFkdA2tM3yprDZXV9lChoBmgJaA9DCMHEH0Vd4HNAlIaUUpRoFUu6aBZHQNrTOs6/7BR1fZQoaAZoCWgPQwh9JCU9DMJwQJSGlFKUaBVLnGgWR0Da0zyYXwb3dX2UKGgGaAloD0MI04OCUvTkc0CUhpRSlGgVS79oFkdA2tNATQVsUXV9lChoBmgJaA9DCGUcI9kjAnNAlIaUUpRoFUumaBZHQNrTQUvwmVt1fZQoaAZoCWgPQwhZNQhzOyNyQJSGlFKUaBVLomgWR0Da00KzollcdX2UKGgGaAloD0MITwRxHs6ZcUCUhpRSlGgVS4poFkdA2tNGO1fE43V9lChoBmgJaA9DCPz89+A1iHJAlIaUUpRoFUu7aBZHQNrTSvrSmZV1fZQoaAZoCWgPQwj/A6xVuxxMQJSGlFKUaBVLb2gWR0Da00xKRMewdX2UKGgGaAloD0MIYkz6e6meckCUhpRSlGgVS5ZoFkdA2tNM1yvLYHV9lChoBmgJaA9DCKaZ7nXS73FAlIaUUpRoFUu6aBZHQNrTTofGMn91fZQoaAZoCWgPQwi46c9+5ERzQJSGlFKUaBVLsWgWR0Da0084//vOdX2UKGgGaAloD0MI/KawUsHEc0CUhpRSlGgVS6RoFkdA2tNU/m1YyXV9lChoBmgJaA9DCNswCoIHkXJAlIaUUpRoFUunaBZHQNrTVqjrRjV1fZQoaAZoCWgPQwglrfiGAvVzQJSGlFKUaBVLqWgWR0Da01rcclw+dX2UKGgGaAloD0MISnuDL4yqcUCUhpRSlGgVS5ZoFkdA2tNb+0PYnXV9lChoBmgJaA9DCBVUVP0K8XJAlIaUUpRoFUu9aBZHQNrTXDodMkB1fZQoaAZoCWgPQwiJXHAGf5pzQJSGlFKUaBVL1mgWR0Da011jBl+WdX2UKGgGaAloD0MIPzc0ZecDc0CUhpRSlGgVS65oFkdA2tNmR5C4SnV9lChoBmgJaA9DCHtq9dUVznJAlIaUUpRoFUu3aBZHQNrTZzXWe6J1fZQoaAZoCWgPQwg6AyMv63ZwQJSGlFKUaBVLp2gWR0Da02pJRO1wdX2UKGgGaAloD0MI4C77daeQc0CUhpRSlGgVS+JoFkdA2tNqu5SWJXV9lChoBmgJaA9DCI3ttaD3pnRAlIaUUpRoFUvBaBZHQNrTbA3kxRF1fZQoaAZoCWgPQwhuhbAaCyhzQJSGlFKUaBVLn2gWR0Da021wn6VMdX2UKGgGaAloD0MIW3heKjZkc0CUhpRSlGgVS6poFkdA2tNxWkrPMXV9lChoBmgJaA9DCOif4GIFSnJAlIaUUpRoFUujaBZHQNrTcYZhrnF1fZQoaAZoCWgPQwhtAaH1sE1zQJSGlFKUaBVLr2gWR0Da03HsAvL6dX2UKGgGaAloD0MI9b7xtecWdECUhpRSlGgVS7toFkdA2tN25Rjz7XV9lChoBmgJaA9DCCbGMv1S2XFAlIaUUpRoFUucaBZHQNrTd9u+AVh1fZQoaAZoCWgPQwgipdk8zgByQJSGlFKUaBVLqWgWR0Da03jlOoHcdX2UKGgGaAloD0MIQNmUKzwDckCUhpRSlGgVS4poFkdA2tN5MfigkHV9lChoBmgJaA9DCGk6OxkcLXFAlIaUUpRoFUuiaBZHQNrTfv3N9ph1fZQoaAZoCWgPQwgKaY1Bp7RyQJSGlFKUaBVLs2gWR0Da04BDF6zFdX2UKGgGaAloD0MIR3U6kLUjdECUhpRSlGgVS7FoFkdA2tOA3y7PIHV9lChoBmgJaA9DCPol4q3zlXJAlIaUUpRoFUufaBZHQNrTh6f8Mux1fZQoaAZoCWgPQwhCz2bVZ6xxQJSGlFKUaBVLpmgWR0Da04hKDkELdX2UKGgGaAloD0MI14hgHNzicECUhpRSlGgVS5poFkdA2tOJoMKCx3V9lChoBmgJaA9DCOjB3Vk7X3BAlIaUUpRoFUuGaBZHQNrTjUAPuoh1fZQoaAZoCWgPQwj3V4/71plzQJSGlFKUaBVLqmgWR0Da047k92X+dX2UKGgGaAloD0MI5sx2hX7Uc0CUhpRSlGgVS8RoFkdA2tOTLiMo+nV9lChoBmgJaA9DCPYNTG5UKnRAlIaUUpRoFUvEaBZHQNrTldgjQiR1fZQoaAZoCWgPQwgriIGuvWJyQJSGlFKUaBVLsmgWR0Da05Yq5LAYdX2UKGgGaAloD0MIHAdeLfdvckCUhpRSlGgVS5FoFkdA2tOXJZ4fOnV9lChoBmgJaA9DCFkZjXxeKnRAlIaUUpRoFUu9aBZHQNrTmHocJdB1fZQoaAZoCWgPQwi4HRoWY6dyQJSGlFKUaBVLm2gWR0Da05lqEeySdX2UKGgGaAloD0MICD4GK054cUCUhpRSlGgVS6xoFkdA2tOacmShanV9lChoBmgJaA9DCPbuj/cqAnRAlIaUUpRoFUuraBZHQNrTmy5AhSt1fZQoaAZoCWgPQwjChNGs7KlyQJSGlFKUaBVLmmgWR0Da05+nGbTddX2UKGgGaAloD0MIymyQSUa4bkCUhpRSlGgVS6FoFkdA2tOf56t1ZHVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
- "_n_updates": 12208,
79
  "n_steps": 2048,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
 
4
  ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
  "__module__": "stable_baselines3.common.policies",
6
  "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f973a541310>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f973a5413a0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f973a541430>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f973a5414c0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f973a541550>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f973a5415e0>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f973a541670>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f973a541700>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f973a541790>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f973a541820>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f973a5418b0>",
18
  "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f973a539cc0>"
20
  },
21
  "verbose": 1,
22
  "policy_kwargs": {},
23
  "observation_space": {
24
  ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAAAAAAAAAAAlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
  "dtype": "float32",
27
  "_shape": [
28
  8
 
35
  },
36
  "action_space": {
37
  ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWViAAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
  "n": 4,
40
  "_shape": [],
41
  "dtype": "int64",
42
  "_np_random": null
43
  },
44
  "n_envs": 16,
45
+ "num_timesteps": 30400000,
46
  "_total_timesteps": 50000000,
47
  "_num_timesteps_at_start": 0,
48
  "seed": null,
49
  "action_noise": null,
50
+ "start_time": 1671197502396425412,
51
  "learning_rate": 0.0003,
52
  "tensorboard_log": null,
53
  "lr_schedule": {
 
56
  },
57
  "_last_obs": {
58
  ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbjjT1VERU+Dmlvvo4dDr+F9zo9YDcyvgAAAAAAAAAADQ2avWEvjbzZzac+Z4Aivn/lGr1wGEq/AACAPwAAgD8zA8i7j+ZBuoPlbLagWFix9C2aOS2BkTUAAIA/AACAP5plhDyuQ6m6fQ3dPa/6hT3sbLk7Kt9FugAAgD8AAIA/ZmaXOxRwiLol660zkDc1MI1aPbpQILOzAACAPwAAgD8Aflc9Q0YtvGLwVL47NK67jhLLu1u8vb0AAIA/AACAP6bk+b3JIQ0/Iid2PaWCRL/ixYC+OHDxPQAAAAAAAAAAWhslvtJxpz8lBKC+49szvyP6xL7zkZK+AAAAAAAAAABm02g9sELoPqxdqrwPtjy/s2UhPtteb70AAAAAAAAAAM1g9buuD5u6r+2ZPccLDbYMgfS6Zp4GtQAAgD8AAIA/ja2jPUjUnD9C4ls+8z0uv5jNmj4aBmA+AAAAAAAAAABmIFi8w3BOO8LNh73thjO+JuHyvX7/Jz8AAIA/AAAAALMSG74txUk+QPHfPvuRKL+VDDI9flKZPgAAAAAAAAAATbwQPXHMZ7v1J1q8cvd2PKEG2zy69lS9AACAPwAAgD/NreS83N+pP0UOJr5k/OC++MQpvXTGSL4AAAAAAAAAAOZXV732uAc/cBNiPOByUL+UA++9m8hrPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
  },
61
  "_last_episode_starts": {
62
  ":type:": "<class 'numpy.ndarray'>",
 
66
  "_episode_num": 0,
67
  "use_sde": false,
68
  "sde_sample_freq": -1,
69
+ "_current_progress_remaining": 0.39248128000000004,
70
  "ep_info_buffer": {
71
  ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIkWEVb2Qbc0CUhpRSlIwBbJRLyIwBdJRHQM8kqzd+G491fZQoaAZoCWgPQwidLouJjRRyQJSGlFKUaBVLqGgWR0DPJK2OsDGMdX2UKGgGaAloD0MIAU2EDU+EckCUhpRSlGgVS7RoFkdAzyS3eNT99HV9lChoBmgJaA9DCLhc/dgkg3JAlIaUUpRoFUucaBZHQM8kyOkDZDl1fZQoaAZoCWgPQwgCEk2gCN1yQJSGlFKUaBVLvWgWR0DPJMlstTUBdX2UKGgGaAloD0MIjBU1mEZ0dECUhpRSlGgVS6xoFkdAzyTOhje9BnV9lChoBmgJaA9DCGed8X0xzHNAlIaUUpRoFUu4aBZHQM8k0Oez2OB1fZQoaAZoCWgPQwg/VBoxM7tzQJSGlFKUaBVLuGgWR0DPJN1mJ3xGdX2UKGgGaAloD0MI5s5MMBz6cECUhpRSlGgVS6JoFkdAzyTg7r9l3HV9lChoBmgJaA9DCKSOjquRqHFAlIaUUpRoFUuMaBZHQM8k5021lXl1fZQoaAZoCWgPQwg/j1GeeSh0QJSGlFKUaBVLwmgWR0DPJPB0EHMVdX2UKGgGaAloD0MI5MCr5U4ldECUhpRSlGgVS8ZoFkdAzyT0elKsdXV9lChoBmgJaA9DCIY8ghspgnBAlIaUUpRoFUuwaBZHQM8k9ejEehh1fZQoaAZoCWgPQwjEswQZgWFzQJSGlFKUaBVLoGgWR0DPJPb2rXDndX2UKGgGaAloD0MIKc5RR8d4c0CUhpRSlGgVS6xoFkdAzyT6CyyD7XV9lChoBmgJaA9DCNNsHofBi3JAlIaUUpRoFUv0aBZHQM8k/jFZPmB1fZQoaAZoCWgPQwjJ/+TvHhdzQJSGlFKUaBVNFAFoFkdAzyT+p6QeWHV9lChoBmgJaA9DCH0FacYi2HNAlIaUUpRoFUuwaBZHQM8lB2BBiTd1fZQoaAZoCWgPQwjDnKBNTi5yQJSGlFKUaBVLgmgWR0DPJQqsySFHdX2UKGgGaAloD0MIc0f/y7XycECUhpRSlGgVS59oFkdAzyUUcmShanV9lChoBmgJaA9DCK8nui78snJAlIaUUpRoFUusaBZHQM8lFQOe8PF1fZQoaAZoCWgPQwhwtOOGX3NzQJSGlFKUaBVLvGgWR0DPJRwPuogndX2UKGgGaAloD0MIprVpbO9ycUCUhpRSlGgVS55oFkdAzyUiBFuvU3V9lChoBmgJaA9DCB3HD5XGOnNAlIaUUpRoFUuqaBZHQM8lKooE0SB1fZQoaAZoCWgPQwg8okJ1M8xyQJSGlFKUaBVLkWgWR0DPJS3l6qsEdX2UKGgGaAloD0MIfqt14rKcckCUhpRSlGgVS4toFkdAzyUuxzJZGXV9lChoBmgJaA9DCHlA2ZQrhG9AlIaUUpRoFUuSaBZHQM8lMsA3kxR1fZQoaAZoCWgPQwjk1qTbEnZzQJSGlFKUaBVLuGgWR0DPJTX4mCyydX2UKGgGaAloD0MIxhhYx/FLcECUhpRSlGgVS5loFkdAzyU2l+EytXV9lChoBmgJaA9DCCuGqwOglnFAlIaUUpRoFUunaBZHQM8lPprtVrB1fZQoaAZoCWgPQwj8prBSQXNvQJSGlFKUaBVLmmgWR0DPJUcLQXyidX2UKGgGaAloD0MIPiZSmg3zc0CUhpRSlGgVS7VoFkdAzyVIlwcYInV9lChoBmgJaA9DCP922a97qXNAlIaUUpRoFUu3aBZHQM8lSd+G47R1fZQoaAZoCWgPQwjjOPBqOTxyQJSGlFKUaBVLo2gWR0DPJU5B5X2edX2UKGgGaAloD0MIPudu10tLb0CUhpRSlGgVS5NoFkdAzyVR3pOernV9lChoBmgJaA9DCHALluqCvXBAlIaUUpRoFUusaBZHQM8lYzNMXad1fZQoaAZoCWgPQwjaqbncoNdzQJSGlFKUaBVLwGgWR0DPJWQPmPo3dX2UKGgGaAloD0MIXd2x2GbUcECUhpRSlGgVS4VoFkdAzyVkpT/ACXV9lChoBmgJaA9DCPJ376hx/HJAlIaUUpRoFUuiaBZHQM8lZSeAd4p1fZQoaAZoCWgPQwi+oIUEjJpwQJSGlFKUaBVLlWgWR0DPJWfxUedTdX2UKGgGaAloD0MIIk+SrhnAcECUhpRSlGgVS6BoFkdAzyVwPtD2J3V9lChoBmgJaA9DCBHEeTiB3URAlIaUUpRoFUtraBZHQM8ldHsLORl1fZQoaAZoCWgPQwg2zTtOEZpyQJSGlFKUaBVLomgWR0DPJXiC6H0sdX2UKGgGaAloD0MIfhr35rdBckCUhpRSlGgVS7poFkdAzyV/YwIt2HV9lChoBmgJaA9DCG8RGOsbzHBAlIaUUpRoFUuhaBZHQM8lgaxPfsN1fZQoaAZoCWgPQwj2tpkKMQhzQJSGlFKUaBVLvGgWR0DPJYSC+UQkdX2UKGgGaAloD0MISino9pJ9cECUhpRSlGgVS45oFkdAzyWE8qWkanV9lChoBmgJaA9DCPmHLT2afkFAlIaUUpRoFUtfaBZHQM8ljL876pJ1fZQoaAZoCWgPQwhFEOfhBAZzQJSGlFKUaBVLtmgWR0DPJZLUAks0dX2UKGgGaAloD0MIfH2tSw05ckCUhpRSlGgVS69oFkdAzyWXJf6XSnV9lChoBmgJaA9DCIQqNXug33FAlIaUUpRoFUu6aBZHQM8ln938n/l1fZQoaAZoCWgPQwjFHtrHCtZwQJSGlFKUaBVLpGgWR0DPJajYwqRVdX2UKGgGaAloD0MIqaCi6tdJckCUhpRSlGgVS6RoFkdAzyWpzQu27XV9lChoBmgJaA9DCMf0hCUeMXNAlIaUUpRoFUumaBZHQM8lqz4L1Ep1fZQoaAZoCWgPQwjVz5uK1G9yQJSGlFKUaBVLtGgWR0DPJbTEUCaJdX2UKGgGaAloD0MIqJAr9ezkcUCUhpRSlGgVS5xoFkdAzyW8L0BfbHV9lChoBmgJaA9DCHWPbK5aO3RAlIaUUpRoFUuzaBZHQM8lvZZ8rqd1fZQoaAZoCWgPQwiU3je+dhhzQJSGlFKUaBVLqmgWR0DPJb4cWCVbdX2UKGgGaAloD0MIQieEDvr4cECUhpRSlGgVS5VoFkdAzyXACBf8dnV9lChoBmgJaA9DCGuBPSZSd3JAlIaUUpRoFUuHaBZHQM8lxvLHMll1fZQoaAZoCWgPQwjWGkrtBTdyQJSGlFKUaBVLqWgWR0DPJco2CNCJdX2UKGgGaAloD0MI64zviwshckCUhpRSlGgVS6loFkdAzyXNOryUcHV9lChoBmgJaA9DCHy1oziHWnNAlIaUUpRoFUu8aBZHQM8l1Ny5qdp1fZQoaAZoCWgPQwih+DHmbkZxQJSGlFKUaBVLoWgWR0DPJdg+MZP3dX2UKGgGaAloD0MIcoi4ORUrcUCUhpRSlGgVS61oFkdAzyXiBun/DXV9lChoBmgJaA9DCG9FYoKay3JAlIaUUpRoFUueaBZHQM8l5DnNgSh1fZQoaAZoCWgPQwjzrnrA/PZxQJSGlFKUaBVLpWgWR0DPJfAkJKJ3dX2UKGgGaAloD0MIsDkHzwSBcUCUhpRSlGgVS6NoFkdAzyXwJ+lTFXV9lChoBmgJaA9DCH/7OnCOvHFAlIaUUpRoFUuoaBZHQM8l87R4QjF1fZQoaAZoCWgPQwgBpaFGoVByQJSGlFKUaBVLiWgWR0DPJfci+tbLdX2UKGgGaAloD0MITDYebDGmZECUhpRSlGgVTegDaBZHQM8l+Ji7TUl1fZQoaAZoCWgPQwhDAkaXN6dvQJSGlFKUaBVLjmgWR0DPJfsSuhbodX2UKGgGaAloD0MIVoFaDF4Kc0CUhpRSlGgVS5doFkdAzyX+Hqu8snV9lChoBmgJaA9DCJyMKsN4W3NAlIaUUpRoFUuPaBZHQM8mBBE8aGZ1fZQoaAZoCWgPQwgNN+DzAzF0QJSGlFKUaBVLzGgWR0DPJgtSbYsedX2UKGgGaAloD0MIgjtQp3z5ckCUhpRSlGgVS7doFkdAzyYNUlzEJnV9lChoBmgJaA9DCFLt0/FYW3JAlIaUUpRoFUueaBZHQM8mDV1GLDR1fZQoaAZoCWgPQwh0mgXanQ10QJSGlFKUaBVLs2gWR0DPJhhI6KcedX2UKGgGaAloD0MIVRUaiCV1cUCUhpRSlGgVS6JoFkdAzyYY08eS0XV9lChoBmgJaA9DCAJiEi4kt3FAlIaUUpRoFUuTaBZHQM8mHtI065p1fZQoaAZoCWgPQwg7inPUEWRxQJSGlFKUaBVLlmgWR0DPJiI3tKI0dX2UKGgGaAloD0MIorjjTT4IdECUhpRSlGgVS7JoFkdAzyYipTdcjnV9lChoBmgJaA9DCJwwYTTrvHBAlIaUUpRoFUuYaBZHQM8mMbz9S/F1fZQoaAZoCWgPQwjx1Y7iHEt0QJSGlFKUaBVLtGgWR0DPJjq4tpVTdX2UKGgGaAloD0MIYvVHGEafckCUhpRSlGgVS7hoFkdAzyY8d4mkWXV9lChoBmgJaA9DCPxVgO+2U3FAlIaUUpRoFUuiaBZHQM8mPe5nUUh1fZQoaAZoCWgPQwgzNJ4IIltyQJSGlFKUaBVLsmgWR0DPJkCgM+eOdX2UKGgGaAloD0MIldOekvOsc0CUhpRSlGgVS7VoFkdAzyZDHDJlrnV9lChoBmgJaA9DCIuMDkhCJnJAlIaUUpRoFUuzaBZHQM8mR/vfCQ91fZQoaAZoCWgPQwinrRHBeO1zQJSGlFKUaBVLrGgWR0DPJktcv/R3dX2UKGgGaAloD0MIJ6CJsGECckCUhpRSlGgVS6FoFkdAzyZQHcDbJ3V9lChoBmgJaA9DCM3mcRhMJnNAlIaUUpRoFUu2aBZHQM8mVscQyyl1fZQoaAZoCWgPQwg6V5QSQnxxQJSGlFKUaBVLtWgWR0DPJlhv3rUtdX2UKGgGaAloD0MICDwwgLB4c0CUhpRSlGgVS6NoFkdAzyZdFvQ4THV9lChoBmgJaA9DCPDAAMIHH3JAlIaUUpRoFUuWaBZHQM8mYV/DtPZ1fZQoaAZoCWgPQwjmBkMdFulzQJSGlFKUaBVLsmgWR0DPJmK+tbLVdX2UKGgGaAloD0MIxJRIohcockCUhpRSlGgVS61oFkdAzyZm5ksjFHV9lChoBmgJaA9DCExvfy5a6nNAlIaUUpRoFUuvaBZHQM8matTLns91fZQoaAZoCWgPQwhlNzP6kXxyQJSGlFKUaBVLgmgWR0DPJm9XmvGIdX2UKGgGaAloD0MIUpyjjg7yckCUhpRSlGgVS5JoFkdAzyZ3RKpT/HVlLg=="
73
  },
74
  "ep_success_buffer": {
75
  ":type:": "<class 'collections.deque'>",
76
  ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
  },
78
+ "_n_updates": 7416,
79
  "n_steps": 2048,
80
  "gamma": 0.999,
81
  "gae_lambda": 0.98,
ppo-LunarLander-v2/policy.optimizer.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:3ccfe318515052333378d21b7cd7643b0429bf1d88020a52d64c90b1cf8bf3ae
3
  size 88057
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9213f6339157f3d17c81bc6ab81530884a3e8edb76dd3209a2fb840c197b9044
3
  size 88057
ppo-LunarLander-v2/policy.pth CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:78e62e2b6fa39bac60c255b9ab28629c8bf94571859f9293008c7086310b6a88
3
  size 43201
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52fcd76f0d1a25d14038e9eafaba76565a925d21e0faf628c1529e7972fe9449
3
  size 43201
replay.mp4 CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
 
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 292.63394271302184, "std_reward": 22.17033780914637, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-16T13:09:11.688203"}
 
1
+ {"mean_reward": 295.41860366602657, "std_reward": 20.879493310330588, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-16T20:23:23.610969"}