File size: 3,746 Bytes
2593d07
fc186c5
 
 
 
2593d07
fc186c5
 
 
 
 
2593d07
fc186c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
---

language:
  - ko
  - en
  - zh
license: mit
pipeline_tag: feature-extraction
tags:
  - transformers
  - sentence-transformers
  - text-embeddings-inference
---




# upskyy/ko-reranker

**ko-reranker**λŠ” [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) λͺ¨λΈμ— [ν•œκ΅­μ–΄ 데이터](https://huggingface.co/datasets/upskyy/ko-wiki-reranking)λ₯Ό finetuning ν•œ model μž…λ‹ˆλ‹€.

## Usage
## Using FlagEmbedding
```

pip install -U FlagEmbedding

```

Get relevance scores (higher scores indicate more relevance):

```python

from FlagEmbedding import FlagReranker





reranker = FlagReranker('upskyy/ko-reranker', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation



score = reranker.compute_score(['query', 'passage'])

print(score) # -1.861328125



# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score

score = reranker.compute_score(['query', 'passage'], normalize=True)

print(score) # 0.13454832326359276



scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])

print(scores) # [-7.37109375, 8.5390625]



# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score

scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)

print(scores) # [0.0006287840192903181, 0.9998043646624727]

```

## Using Sentence-Transformers

```

pip install -U sentence-transformers

```

Get relevance scores (higher scores indicate more relevance):

```python

from sentence_transformers import SentenceTransformer





sentences_1 = ["경제 μ „λ¬Έκ°€κ°€ 금리 μΈν•˜μ— λŒ€ν•œ μ˜ˆμΈ‘μ„ ν•˜κ³  μžˆλ‹€.", "주식 μ‹œμž₯μ—μ„œ ν•œ νˆ¬μžμžκ°€ 주식을 λ§€μˆ˜ν•œλ‹€."]

sentences_2 = ["ν•œ νˆ¬μžμžκ°€ λΉ„νŠΈμ½”μΈμ„ λ§€μˆ˜ν•œλ‹€.", "금육 κ±°λž˜μ†Œμ—μ„œ μƒˆλ‘œμš΄ 디지털 μžμ‚°μ΄ 상μž₯λœλ‹€."]



model = SentenceTransformer('upskyy/ko-reranker')



embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)

embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)

similarity = embeddings_1 @ embeddings_2.T



print(similarity)

```

## Using Huggingface transformers

Get relevance scores (higher scores indicate more relevance):


```python

import torch

from transformers import AutoModelForSequenceClassification, AutoTokenizer





tokenizer = AutoTokenizer.from_pretrained('upskyy/ko-reranker')

model = AutoModelForSequenceClassification.from_pretrained('upskyy/ko-reranker')

model.eval()



pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]



with torch.no_grad():

    inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)

    scores = model(**inputs, return_dict=True).logits.view(-1, ).float()

    print(scores)

```



## Citation

```bibtex

@misc{bge_embedding,

      title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, 

      author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},

      year={2023},

      eprint={2309.07597},

      archivePrefix={arXiv},

      primaryClass={cs.CL}

}

```

## License

FlagEmbedding is licensed under the MIT License. The released models can be used for commercial purposes free of charge.