Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +109 -0
- config.json +34 -0
- model.safetensors +3 -0
- sentencepiece.bpe.model +3 -0
- special_tokens_map.json +51 -0
- tokenizer.json +3 -0
- tokenizer_config.json +55 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,3 +1,112 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
language:
|
3 |
+
- ko
|
4 |
+
- en
|
5 |
+
- zh
|
6 |
license: mit
|
7 |
+
pipeline_tag: feature-extraction
|
8 |
+
tags:
|
9 |
+
- transformers
|
10 |
+
- sentence-transformers
|
11 |
+
- text-embeddings-inference
|
12 |
---
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
# upskyy/ko-reranker
|
17 |
+
|
18 |
+
**ko-reranker**는 [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) 모델에 [한국어 데이터](https://huggingface.co/datasets/upskyy/ko-wiki-reranking)를 finetuning 한 model 입니다.
|
19 |
+
|
20 |
+
## Usage
|
21 |
+
## Using FlagEmbedding
|
22 |
+
```
|
23 |
+
pip install -U FlagEmbedding
|
24 |
+
```
|
25 |
+
|
26 |
+
Get relevance scores (higher scores indicate more relevance):
|
27 |
+
|
28 |
+
```python
|
29 |
+
from FlagEmbedding import FlagReranker
|
30 |
+
|
31 |
+
|
32 |
+
reranker = FlagReranker('upskyy/ko-reranker', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
|
33 |
+
|
34 |
+
score = reranker.compute_score(['query', 'passage'])
|
35 |
+
print(score) # -1.861328125
|
36 |
+
|
37 |
+
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
38 |
+
score = reranker.compute_score(['query', 'passage'], normalize=True)
|
39 |
+
print(score) # 0.13454832326359276
|
40 |
+
|
41 |
+
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
|
42 |
+
print(scores) # [-7.37109375, 8.5390625]
|
43 |
+
|
44 |
+
# You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
|
45 |
+
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
|
46 |
+
print(scores) # [0.0006287840192903181, 0.9998043646624727]
|
47 |
+
```
|
48 |
+
|
49 |
+
## Using Sentence-Transformers
|
50 |
+
|
51 |
+
```
|
52 |
+
pip install -U sentence-transformers
|
53 |
+
```
|
54 |
+
|
55 |
+
Get relevance scores (higher scores indicate more relevance):
|
56 |
+
|
57 |
+
```python
|
58 |
+
from sentence_transformers import SentenceTransformer
|
59 |
+
|
60 |
+
|
61 |
+
sentences_1 = ["경제 전문가가 금리 인하에 대한 예측을 하고 있다.", "주식 시장에서 한 투자자가 주식을 매수한다."]
|
62 |
+
sentences_2 = ["한 투자자가 비트코인을 매수한다.", "금융 거래소에서 새로운 디지털 자산이 상장된다."]
|
63 |
+
|
64 |
+
model = SentenceTransformer('upskyy/ko-reranker')
|
65 |
+
|
66 |
+
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
|
67 |
+
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
|
68 |
+
similarity = embeddings_1 @ embeddings_2.T
|
69 |
+
|
70 |
+
print(similarity)
|
71 |
+
```
|
72 |
+
|
73 |
+
## Using Huggingface transformers
|
74 |
+
|
75 |
+
Get relevance scores (higher scores indicate more relevance):
|
76 |
+
|
77 |
+
|
78 |
+
```python
|
79 |
+
import torch
|
80 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
81 |
+
|
82 |
+
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained('upskyy/ko-reranker')
|
84 |
+
model = AutoModelForSequenceClassification.from_pretrained('upskyy/ko-reranker')
|
85 |
+
model.eval()
|
86 |
+
|
87 |
+
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
|
88 |
+
|
89 |
+
with torch.no_grad():
|
90 |
+
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
|
91 |
+
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
|
92 |
+
print(scores)
|
93 |
+
```
|
94 |
+
|
95 |
+
|
96 |
+
|
97 |
+
## Citation
|
98 |
+
|
99 |
+
```bibtex
|
100 |
+
@misc{bge_embedding,
|
101 |
+
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
|
102 |
+
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
|
103 |
+
year={2023},
|
104 |
+
eprint={2309.07597},
|
105 |
+
archivePrefix={arXiv},
|
106 |
+
primaryClass={cs.CL}
|
107 |
+
}
|
108 |
+
```
|
109 |
+
|
110 |
+
## License
|
111 |
+
|
112 |
+
FlagEmbedding is licensed under the MIT License. The released models can be used for commercial purposes free of charge.
|
config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "BAAI/bge-reranker-large",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"id2label": {
|
14 |
+
"0": "LABEL_0"
|
15 |
+
},
|
16 |
+
"initializer_range": 0.02,
|
17 |
+
"intermediate_size": 4096,
|
18 |
+
"label2id": {
|
19 |
+
"LABEL_0": 0
|
20 |
+
},
|
21 |
+
"layer_norm_eps": 1e-05,
|
22 |
+
"max_position_embeddings": 514,
|
23 |
+
"model_type": "xlm-roberta",
|
24 |
+
"num_attention_heads": 16,
|
25 |
+
"num_hidden_layers": 24,
|
26 |
+
"output_past": true,
|
27 |
+
"pad_token_id": 1,
|
28 |
+
"position_embedding_type": "absolute",
|
29 |
+
"torch_dtype": "float32",
|
30 |
+
"transformers_version": "4.42.3",
|
31 |
+
"type_vocab_size": 1,
|
32 |
+
"use_cache": true,
|
33 |
+
"vocab_size": 250002
|
34 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dafec15e4f4bcbb0c4f691622c7726852d710493aef815c6a3ce323a7539b16b
|
3 |
+
size 2239614572
|
sentencepiece.bpe.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
|
3 |
+
size 5069051
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": true,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9eb652ac4e40cc093272bbbe0f55d521cf67570060227109b5cdc20945a4489e
|
3 |
+
size 17098107
|
tokenizer_config.json
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": true,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"model_max_length": 512,
|
50 |
+
"pad_token": "<pad>",
|
51 |
+
"sep_token": "</s>",
|
52 |
+
"sp_model_kwargs": {},
|
53 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
54 |
+
"unk_token": "<unk>"
|
55 |
+
}
|