upskyy commited on
Commit
fc186c5
1 Parent(s): 2593d07

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,112 @@
1
  ---
 
 
 
 
2
  license: mit
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - ko
4
+ - en
5
+ - zh
6
  license: mit
7
+ pipeline_tag: feature-extraction
8
+ tags:
9
+ - transformers
10
+ - sentence-transformers
11
+ - text-embeddings-inference
12
  ---
13
+
14
+
15
+
16
+ # upskyy/ko-reranker
17
+
18
+ **ko-reranker**는 [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) 모델에 [한국어 데이터](https://huggingface.co/datasets/upskyy/ko-wiki-reranking)를 finetuning 한 model 입니다.
19
+
20
+ ## Usage
21
+ ## Using FlagEmbedding
22
+ ```
23
+ pip install -U FlagEmbedding
24
+ ```
25
+
26
+ Get relevance scores (higher scores indicate more relevance):
27
+
28
+ ```python
29
+ from FlagEmbedding import FlagReranker
30
+
31
+
32
+ reranker = FlagReranker('upskyy/ko-reranker', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
33
+
34
+ score = reranker.compute_score(['query', 'passage'])
35
+ print(score) # -1.861328125
36
+
37
+ # You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
38
+ score = reranker.compute_score(['query', 'passage'], normalize=True)
39
+ print(score) # 0.13454832326359276
40
+
41
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
42
+ print(scores) # [-7.37109375, 8.5390625]
43
+
44
+ # You can map the scores into 0-1 by set "normalize=True", which will apply sigmoid function to the score
45
+ scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']], normalize=True)
46
+ print(scores) # [0.0006287840192903181, 0.9998043646624727]
47
+ ```
48
+
49
+ ## Using Sentence-Transformers
50
+
51
+ ```
52
+ pip install -U sentence-transformers
53
+ ```
54
+
55
+ Get relevance scores (higher scores indicate more relevance):
56
+
57
+ ```python
58
+ from sentence_transformers import SentenceTransformer
59
+
60
+
61
+ sentences_1 = ["경제 전문가가 금리 인하에 대한 예측을 하고 있다.", "주식 시장에서 한 투자자가 주식을 매수한다."]
62
+ sentences_2 = ["한 투자자가 비트코인을 매수한다.", "금융 거래소에서 새로운 디지털 자산이 상장된다."]
63
+
64
+ model = SentenceTransformer('upskyy/ko-reranker')
65
+
66
+ embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
67
+ embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
68
+ similarity = embeddings_1 @ embeddings_2.T
69
+
70
+ print(similarity)
71
+ ```
72
+
73
+ ## Using Huggingface transformers
74
+
75
+ Get relevance scores (higher scores indicate more relevance):
76
+
77
+
78
+ ```python
79
+ import torch
80
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
81
+
82
+
83
+ tokenizer = AutoTokenizer.from_pretrained('upskyy/ko-reranker')
84
+ model = AutoModelForSequenceClassification.from_pretrained('upskyy/ko-reranker')
85
+ model.eval()
86
+
87
+ pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
88
+
89
+ with torch.no_grad():
90
+ inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
91
+ scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
92
+ print(scores)
93
+ ```
94
+
95
+
96
+
97
+ ## Citation
98
+
99
+ ```bibtex
100
+ @misc{bge_embedding,
101
+ title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
102
+ author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
103
+ year={2023},
104
+ eprint={2309.07597},
105
+ archivePrefix={arXiv},
106
+ primaryClass={cs.CL}
107
+ }
108
+ ```
109
+
110
+ ## License
111
+
112
+ FlagEmbedding is licensed under the MIT License. The released models can be used for commercial purposes free of charge.
config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-reranker-large",
3
+ "architectures": [
4
+ "XLMRobertaForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 1024,
13
+ "id2label": {
14
+ "0": "LABEL_0"
15
+ },
16
+ "initializer_range": 0.02,
17
+ "intermediate_size": 4096,
18
+ "label2id": {
19
+ "LABEL_0": 0
20
+ },
21
+ "layer_norm_eps": 1e-05,
22
+ "max_position_embeddings": 514,
23
+ "model_type": "xlm-roberta",
24
+ "num_attention_heads": 16,
25
+ "num_hidden_layers": 24,
26
+ "output_past": true,
27
+ "pad_token_id": 1,
28
+ "position_embedding_type": "absolute",
29
+ "torch_dtype": "float32",
30
+ "transformers_version": "4.42.3",
31
+ "type_vocab_size": 1,
32
+ "use_cache": true,
33
+ "vocab_size": 250002
34
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dafec15e4f4bcbb0c4f691622c7726852d710493aef815c6a3ce323a7539b16b
3
+ size 2239614572
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cfc8146abe2a0488e9e2a0c56de7952f7c11ab059eca145a0a727afce0db2865
3
+ size 5069051
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": true,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9eb652ac4e40cc093272bbbe0f55d521cf67570060227109b5cdc20945a4489e
3
+ size 17098107
tokenizer_config.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "250001": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": true,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "eos_token": "</s>",
48
+ "mask_token": "<mask>",
49
+ "model_max_length": 512,
50
+ "pad_token": "<pad>",
51
+ "sep_token": "</s>",
52
+ "sp_model_kwargs": {},
53
+ "tokenizer_class": "XLMRobertaTokenizer",
54
+ "unk_token": "<unk>"
55
+ }