whisper-small-final / README.md
uoseftalaat's picture
End of training
f8c2eea verified
metadata
language:
  - ara
license: apache-2.0
base_model: openai/whisper-small
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - uoseftalaat/hoping_its_final_dataset
metrics:
  - wer
model-index:
  - name: Whisper Small for quran recognition
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Quran_requiters
          type: uoseftalaat/hoping_its_final_dataset
          config: default
          split: test
          args: 'config: default, split: train'
        metrics:
          - name: Wer
            type: wer
            value: 3.3350524325253565

Whisper Small for quran recognition

This model is a fine-tuned version of openai/whisper-small on the Quran_requiters dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0178
  • Wer: 3.3351

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0185 1.62 500 0.0355 7.8563
0.0012 3.24 1000 0.0224 4.4525
0.0004 4.85 1500 0.0186 3.4554
0.0002 6.47 2000 0.0178 3.3351

Framework versions

  • Transformers 4.39.0.dev0
  • Pytorch 2.1.2
  • Datasets 2.17.1
  • Tokenizers 0.15.1