Chinese Whole Word Masking RoBERTa Miniatures
Model description
This is the set of 6 Chinese Whole Word Masking RoBERTa models pre-trained by UER-py, which is introduced in this paper. Besides, the models could also be pre-trained by TencentPretrain introduced in this paper, which inherits UER-py to support models with parameters above one billion, and extends it to a multimodal pre-training framework.
Turc et al. have shown that the standard BERT recipe is effective on a wide range of model sizes. Following their paper, we released the 6 Chinese Whole Word Masking RoBERTa models. In order to facilitate users in reproducing the results, we used a publicly available corpus and word segmentation tool, and provided all training details.
You can download the 6 Chinese RoBERTa miniatures either from the UER-py Modelzoo page, or via HuggingFace from the links below:
Link | |
---|---|
Tiny | 2/128 (Tiny) |
Mini | 4/256 (Mini) |
Small | 4/512 (Small) |
Medium | 8/512 (Medium) |
Base | 12/768 (Base) |
Large | 24/1024 (Large) |
Here are scores on the devlopment set of six Chinese tasks:
Model | Score | book_review | chnsenticorp | lcqmc | tnews(CLUE) | iflytek(CLUE) | ocnli(CLUE) |
---|---|---|---|---|---|---|---|
RoBERTa-Tiny-WWM | 72.2 | 83.7 | 91.8 | 81.8 | 62.1 | 55.4 | 58.6 |
RoBERTa-Mini-WWM | 76.3 | 86.4 | 93.0 | 86.8 | 64.4 | 58.7 | 68.8 |
RoBERTa-Small-WWM | 77.6 | 88.1 | 93.8 | 87.2 | 65.2 | 59.6 | 71.4 |
RoBERTa-Medium-WWM | 78.6 | 89.3 | 94.4 | 88.8 | 66.0 | 59.9 | 73.2 |
RoBERTa-Base-WWM | 80.2 | 90.6 | 95.8 | 89.4 | 67.5 | 61.8 | 76.2 |
RoBERTa-Large-WWM | 81.1 | 91.1 | 95.8 | 90.0 | 68.5 | 62.1 | 79.1 |
For each task, we selected the best fine-tuning hyperparameters from the lists below, and trained with the sequence length of 128:
- epochs: 3, 5, 8
- batch sizes: 32, 64
- learning rates: 3e-5, 1e-4, 3e-4
How to use
You can use this model directly with a pipeline for masked language modeling:
>>> from transformers import pipeline
>>> unmasker = pipeline('fill-mask', model='uer/roberta-tiny-wwm-chinese-cluecorpussmall')
>>> unmasker("北京是[MASK]国的首都。")
[
{'score': 0.294228732585907,
'token': 704,
'token_str': '中',
'sequence': '北 京 是 中 国 的 首 都 。'},
{'score': 0.19691626727581024,
'token': 1266,
'token_str': '北',
'sequence': '北 京 是 北 国 的 首 都 。'},
{'score': 0.1070084273815155,
'token': 7506,
'token_str': '韩',
'sequence': '北 京 是 韩 国 的 首 都 。'},
{'score': 0.031527262181043625,
'token': 2769,
'token_str': '我',
'sequence': '北 京 是 我 国 的 首 都 。'},
{'score': 0.023054633289575577,
'token': 1298,
'token_str': '南',
'sequence': '北 京 是 南 国 的 首 都 。'}
]
Here is how to use this model to get the features of a given text in PyTorch:
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall')
model = BertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
and in TensorFlow:
from transformers import BertTokenizer, TFBertModel
tokenizer = BertTokenizer.from_pretrained('uer/roberta-base-wwm-chinese-cluecorpussmall')
model = TFBertModel.from_pretrained("uer/roberta-base-wwm-chinese-cluecorpussmall")
text = "用你喜欢的任何文本替换我。"
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)
Training data
CLUECorpusSmall is used as training data.
Training procedure
Models are pre-trained by UER-py on Tencent Cloud. We pre-train 1,000,000 steps with a sequence length of 128 and then pre-train 250,000 additional steps with a sequence length of 512. We use the same hyper-parameters on different model sizes.
jieba is used as word segmentation tool.
Taking the case of Whole Word Masking RoBERTa-Medium
Stage1:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_seq128_dataset.pt \
--processes_num 32 --seq_length 128 \
--dynamic_masking --data_processor mlm
python3 pretrain.py --dataset_path cluecorpussmall_seq128_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--config_path models/bert/medium_config.json \
--output_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 1000000 --save_checkpoint_steps 100000 --report_steps 50000 \
--learning_rate 1e-4 --batch_size 64 \
--whole_word_masking \
--data_processor mlm --target mlm
Stage2:
python3 preprocess.py --corpus_path corpora/cluecorpussmall.txt \
--vocab_path models/google_zh_vocab.txt \
--dataset_path cluecorpussmall_seq512_dataset.pt \
--processes_num 32 --seq_length 512 \
--dynamic_masking --data_processor mlm
python3 pretrain.py --dataset_path cluecorpussmall_seq512_dataset.pt \
--vocab_path models/google_zh_vocab.txt \
--pretrained_model_path models/cluecorpussmall_wwm_roberta_medium_seq128_model.bin-1000000 \
--config_path models/bert/medium_config.json \
--output_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin \
--world_size 8 --gpu_ranks 0 1 2 3 4 5 6 7 \
--total_steps 250000 --save_checkpoint_steps 50000 --report_steps 10000 \
--learning_rate 5e-5 --batch_size 16 \
--whole_word_masking \
--data_processor mlm --target mlm
Finally, we convert the pre-trained model into Huggingface's format:
python3 scripts/convert_bert_from_uer_to_huggingface.py --input_model_path models/cluecorpussmall_wwm_roberta_medium_seq512_model.bin-250000 \
--output_model_path pytorch_model.bin \
--layers_num 8 --type mlm
BibTeX entry and citation info
@article{zhao2019uer,
title={UER: An Open-Source Toolkit for Pre-training Models},
author={Zhao, Zhe and Chen, Hui and Zhang, Jinbin and Zhao, Xin and Liu, Tao and Lu, Wei and Chen, Xi and Deng, Haotang and Ju, Qi and Du, Xiaoyong},
journal={EMNLP-IJCNLP 2019},
pages={241},
year={2019}
}
@article{zhao2023tencentpretrain,
title={TencentPretrain: A Scalable and Flexible Toolkit for Pre-training Models of Different Modalities},
author={Zhao, Zhe and Li, Yudong and Hou, Cheng and Zhao, Jing and others},
journal={ACL 2023},
pages={217},
year={2023}
- Downloads last month
- 4