llama-3-qlora-wizard-processed-indicator-0.6

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the yihanwang617/WizardLM_70k_processed_indicator_unfiltered_4k dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6652

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss
0.718 0.2225 200 0.7090
0.7205 0.4450 400 0.6897
0.7203 0.6675 600 0.6808
0.703 0.8900 800 0.6756
0.6759 1.1125 1000 0.6748
0.6533 1.3350 1200 0.6695
0.6458 1.5575 1400 0.6669
0.632 1.7800 1600 0.6655

Framework versions

  • PEFT 0.12.0
  • Transformers 4.40.1
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
8.03B params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for ucla-cmllab/llama-3-qlora-wizard-processed-indicator-0.6

Adapter
(540)
this model

Dataset used to train ucla-cmllab/llama-3-qlora-wizard-processed-indicator-0.6

Collection including ucla-cmllab/llama-3-qlora-wizard-processed-indicator-0.6