metadata
library_name: transformers
license: mit
base_model: gpt2
tags:
- generated_from_trainer
datasets:
- hatexplain
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: gpt2-hatexplain
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: hatexplain
type: hatexplain
config: plain_text
split: validation
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.7001039501039501
- name: Precision
type: precision
value: 0.6918647538029303
- name: Recall
type: recall
value: 0.7001039501039501
- name: F1
type: f1
value: 0.6920044305899404
gpt2-hatexplain
This model is a fine-tuned version of gpt2 on the hatexplain dataset. It achieves the following results on the evaluation set:
- Loss: 0.7758
- Accuracy: 0.7001
- Precision: 0.6919
- Recall: 0.7001
- F1: 0.6920
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
---|---|---|---|---|---|---|---|
0.7621 | 1.0 | 962 | 0.7321 | 0.6805 | 0.6755 | 0.6805 | 0.6690 |
0.6306 | 2.0 | 1924 | 0.7410 | 0.6863 | 0.6775 | 0.6863 | 0.6767 |
0.5825 | 3.0 | 2886 | 0.7928 | 0.6868 | 0.6800 | 0.6868 | 0.6819 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu118
- Datasets 3.1.0
- Tokenizers 0.21.0