uboza10300's picture
End of training
0039ea5 verified
metadata
library_name: transformers
license: mit
base_model: gpt2
tags:
  - generated_from_trainer
datasets:
  - hatexplain
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: finetuned-gpt2-hatexplainV2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: hatexplain
          type: hatexplain
          config: plain_text
          split: validation
          args: plain_text
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.6787941787941788
          - name: Precision
            type: precision
            value: 0.6744852177618593
          - name: Recall
            type: recall
            value: 0.6787941787941788
          - name: F1
            type: f1
            value: 0.6752460830597729

finetuned-gpt2-hatexplainV2

This model is a fine-tuned version of gpt2 on the hatexplain dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8927
  • Accuracy: 0.6788
  • Precision: 0.6745
  • Recall: 0.6788
  • F1: 0.6752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.7476 1.0 962 0.7423 0.6785 0.6724 0.6785 0.6695
0.6276 2.0 1924 0.7384 0.6878 0.6798 0.6878 0.6815
0.5859 3.0 2886 0.7771 0.6790 0.6774 0.6790 0.6762
0.3921 4.0 3848 0.8746 0.6795 0.6752 0.6795 0.6768
0.4358 5.0 4810 0.9455 0.6769 0.6724 0.6769 0.6739

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu118
  • Datasets 3.1.0
  • Tokenizers 0.21.0