|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-large-lv60 |
|
tags: |
|
- automatic-speech-recognition |
|
- edinburghcstr/ami |
|
- generated_from_trainer |
|
datasets: |
|
- ami |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-base-ami-fine-tuned |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: EDINBURGHCSTR/AMI - IHM |
|
type: ami |
|
config: ihm |
|
split: None |
|
args: 'Config: ihm, Training split: train, Eval split: validation' |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.33567800752279153 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-base-ami-fine-tuned |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-large-lv60](https://huggingface.co/facebook/wav2vec2-large-lv60) on the EDINBURGHCSTR/AMI - IHM dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5988 |
|
- Wer: 0.3357 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 2.0 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:------:| |
|
| 1.0732 | 0.1565 | 1000 | 1.1351 | 0.6738 | |
|
| 1.4052 | 0.3131 | 2000 | 0.7311 | 0.4083 | |
|
| 0.8798 | 0.4696 | 3000 | 0.5889 | 0.3604 | |
|
| 0.4789 | 0.6262 | 4000 | 0.5681 | 0.3521 | |
|
| 0.8011 | 0.7827 | 5000 | 0.5288 | 0.3382 | |
|
| 1.4331 | 0.9393 | 6000 | 0.5386 | 0.3280 | |
|
| 0.2201 | 1.0958 | 7000 | 0.5154 | 0.3198 | |
|
| 0.1934 | 1.2523 | 8000 | 0.4895 | 0.3131 | |
|
| 0.2713 | 1.4089 | 9000 | 0.4809 | 0.3065 | |
|
| 0.1388 | 1.5654 | 10000 | 0.4984 | 0.3061 | |
|
| 0.4085 | 1.7220 | 11000 | 0.4842 | 0.3082 | |
|
| 0.3529 | 1.8785 | 12000 | 0.5417 | 0.3198 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.0.dev0 |
|
- Pytorch 2.3.0a0+gitcd033a1 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|