squad_qa_title_v5_full_recite_full_passage_meta-llama_Llama-2-7b-hf_1e-4_lora
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3478
- Accuracy: 0.8669
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.2097 | 1.0 | 158 | 0.8026 | 0.6959 |
0.2421 | 2.0 | 317 | 0.8546 | 0.2840 |
0.1304 | 3.0 | 475 | 0.8658 | 0.2053 |
0.1007 | 4.0 | 634 | 0.8667 | 0.2005 |
0.0941 | 5.0 | 792 | 0.8665 | 0.2082 |
0.0838 | 6.0 | 951 | 0.8669 | 0.2144 |
0.0745 | 7.0 | 1109 | 0.8673 | 0.2232 |
0.0667 | 8.0 | 1268 | 0.8667 | 0.2343 |
0.0602 | 9.0 | 1426 | 0.8664 | 0.2490 |
0.0558 | 10.0 | 1585 | 0.8659 | 0.2618 |
0.0519 | 11.0 | 1743 | 0.8674 | 0.2661 |
0.05 | 12.0 | 1902 | 0.8680 | 0.2679 |
0.0475 | 13.0 | 2060 | 0.8664 | 0.2857 |
0.0484 | 14.0 | 2219 | 0.8660 | 0.2898 |
0.0466 | 15.0 | 2377 | 0.8664 | 0.2856 |
0.0464 | 16.0 | 2536 | 0.8661 | 0.3037 |
0.045 | 17.0 | 2694 | 0.8660 | 0.2976 |
0.0459 | 18.0 | 2853 | 0.8660 | 0.2930 |
0.0478 | 19.0 | 3011 | 0.8664 | 0.2994 |
0.0444 | 20.0 | 3170 | 0.8665 | 0.3027 |
0.0443 | 21.0 | 3328 | 0.8662 | 0.2945 |
0.0432 | 22.0 | 3487 | 0.8665 | 0.3020 |
0.0427 | 23.0 | 3645 | 0.8664 | 0.3122 |
0.0436 | 24.0 | 3804 | 0.8663 | 0.3181 |
0.0424 | 25.0 | 3962 | 0.8661 | 0.3300 |
0.0442 | 26.0 | 4121 | 0.8662 | 0.3173 |
0.0455 | 27.0 | 4279 | 0.8659 | 0.2914 |
0.0464 | 28.0 | 4438 | 0.8663 | 0.3043 |
0.0446 | 29.0 | 4596 | 0.8664 | 0.3201 |
0.0427 | 30.0 | 4755 | 0.8666 | 0.3103 |
0.0428 | 31.0 | 4913 | 0.8668 | 0.3120 |
0.0422 | 32.0 | 5072 | 0.8665 | 0.3209 |
0.0422 | 33.0 | 5230 | 0.8664 | 0.3256 |
0.0426 | 34.0 | 5389 | 0.8665 | 0.3295 |
0.0423 | 35.0 | 5547 | 0.8667 | 0.3375 |
0.0421 | 36.0 | 5706 | 0.8666 | 0.3299 |
0.0416 | 37.0 | 5864 | 0.8664 | 0.3438 |
0.0429 | 38.0 | 6023 | 0.8657 | 0.3313 |
0.0455 | 39.0 | 6181 | 0.8661 | 0.3100 |
0.0433 | 40.0 | 6340 | 0.8663 | 0.3111 |
0.0435 | 41.0 | 6498 | 0.8666 | 0.3134 |
0.042 | 42.0 | 6657 | 0.8667 | 0.3188 |
0.042 | 43.0 | 6815 | 0.8668 | 0.3219 |
0.0413 | 44.0 | 6974 | 0.8666 | 0.3348 |
0.0416 | 45.0 | 7110 | 0.3498 | 0.8666 |
0.0413 | 46.0 | 7269 | 0.3380 | 0.8666 |
0.0418 | 47.0 | 7427 | 0.3580 | 0.8668 |
0.041 | 48.0 | 7586 | 0.3516 | 0.8667 |
0.0411 | 49.0 | 7744 | 0.3468 | 0.8669 |
0.0417 | 49.98 | 7900 | 0.3478 | 0.8669 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/squad_qa_title_v5_full_recite_full_passage_meta-llama_Llama-2-7b-hf_1e-4_lora
Base model
meta-llama/Llama-2-7b-hf