squad_qa_title_v5_full_qaonly_meta-llama_Llama-2-7b-hf_1e-4_lora
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3786
- Accuracy: 0.6721
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.99 | 74 | 1.4341 | 0.6835 |
1.593 | 2.0 | 149 | 1.3054 | 0.6927 |
1.0401 | 2.99 | 223 | 1.3988 | 0.6877 |
1.0401 | 3.99 | 298 | 1.4942 | 0.6863 |
0.7928 | 5.0 | 373 | 1.6119 | 0.6800 |
0.5087 | 5.99 | 447 | 1.7646 | 0.6772 |
0.3806 | 6.99 | 522 | 1.8426 | 0.6746 |
0.3806 | 8.0 | 597 | 1.9563 | 0.6741 |
0.3177 | 8.99 | 671 | 1.9976 | 0.6740 |
0.2785 | 10.0 | 746 | 2.0078 | 0.6762 |
0.2681 | 10.99 | 820 | 2.1315 | 0.6746 |
0.2681 | 11.99 | 895 | 2.1216 | 0.6745 |
0.2579 | 13.0 | 970 | 2.1533 | 0.6738 |
0.2477 | 13.99 | 1044 | 2.2242 | 0.6752 |
0.2467 | 14.99 | 1119 | 2.1754 | 0.6746 |
0.2467 | 16.0 | 1194 | 2.2735 | 0.6722 |
0.2445 | 16.99 | 1268 | 2.2275 | 0.6747 |
0.2412 | 18.0 | 1343 | 2.2674 | 0.6741 |
0.2418 | 18.99 | 1417 | 2.1967 | 0.6737 |
0.2418 | 19.99 | 1492 | 2.2366 | 0.6743 |
0.2399 | 21.0 | 1567 | 2.3867 | 0.6715 |
0.2334 | 21.99 | 1641 | 2.3286 | 0.6745 |
0.2371 | 22.99 | 1716 | 2.3928 | 0.6724 |
0.2371 | 24.0 | 1791 | 2.2756 | 0.6734 |
0.2352 | 24.99 | 1865 | 2.2664 | 0.6758 |
0.2343 | 26.0 | 1940 | 2.2839 | 0.6731 |
0.2394 | 26.99 | 2014 | 2.3062 | 0.6736 |
0.2394 | 27.99 | 2089 | 2.3525 | 0.6747 |
0.2343 | 29.0 | 2164 | 2.3717 | 0.6733 |
0.2309 | 29.99 | 2238 | 2.4194 | 0.6732 |
0.2313 | 30.99 | 2313 | 2.3053 | 0.6735 |
0.2313 | 32.0 | 2388 | 2.4772 | 0.6728 |
0.2279 | 32.99 | 2462 | 2.3837 | 0.6729 |
0.228 | 34.0 | 2537 | 2.4367 | 0.6723 |
0.2294 | 34.99 | 2611 | 2.3972 | 0.6716 |
0.2294 | 35.99 | 2686 | 2.4411 | 0.6723 |
0.2264 | 37.0 | 2761 | 2.4235 | 0.6727 |
0.2266 | 37.99 | 2835 | 2.4057 | 0.6738 |
0.2276 | 38.99 | 2910 | 2.4658 | 0.6728 |
0.2276 | 40.0 | 2985 | 2.4582 | 0.6731 |
0.2249 | 40.99 | 3059 | 2.5592 | 0.6717 |
0.2244 | 42.0 | 3134 | 2.5973 | 0.6715 |
0.2254 | 42.99 | 3208 | 2.6135 | 0.6731 |
0.2254 | 43.99 | 3283 | 2.6544 | 0.6719 |
0.2234 | 45.0 | 3358 | 2.6960 | 0.6712 |
0.2228 | 45.99 | 3432 | 2.6703 | 0.6710 |
0.2248 | 46.99 | 3507 | 2.6533 | 0.6720 |
0.2248 | 48.0 | 3582 | 2.6606 | 0.6714 |
0.2231 | 48.99 | 3656 | 2.5968 | 0.6708 |
0.2265 | 49.58 | 3700 | 2.3786 | 0.6721 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/squad_qa_title_v5_full_qaonly_meta-llama_Llama-2-7b-hf_1e-4_lora
Base model
meta-llama/Llama-2-7b-hf