metadata
license: other
base_model: Qwen/Qwen1.5-4B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: squad_qa_baseline_v5_full_Qwen_Qwen1.5-4B_3e-5_lora
results: []
library_name: peft
squad_qa_baseline_v5_full_Qwen_Qwen1.5-4B_3e-5_lora
This model is a fine-tuned version of Qwen/Qwen1.5-4B on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 3.8632
- Accuracy: 0.5660
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 0.9916 | 74 | 2.0550 | 0.5952 |
2.3403 | 1.9966 | 149 | 2.0411 | 0.5933 |
2.0198 | 2.9883 | 223 | 2.0403 | 0.5932 |
2.0198 | 3.9933 | 298 | 2.0647 | 0.5922 |
1.9239 | 4.9983 | 373 | 2.0999 | 0.5921 |
1.7309 | 5.9899 | 447 | 2.1973 | 0.5879 |
1.5254 | 6.9950 | 522 | 2.2753 | 0.5861 |
1.5254 | 8.0 | 597 | 2.4079 | 0.5819 |
1.2937 | 8.9916 | 671 | 2.5096 | 0.5775 |
1.0409 | 9.9966 | 746 | 2.6079 | 0.5739 |
0.8766 | 10.9883 | 820 | 2.7579 | 0.5718 |
0.8766 | 11.9933 | 895 | 2.8722 | 0.5688 |
0.721 | 12.9983 | 970 | 2.9797 | 0.5672 |
0.6011 | 13.9899 | 1044 | 3.0708 | 0.5662 |
0.5455 | 14.9950 | 1119 | 3.1660 | 0.5648 |
0.5455 | 16.0 | 1194 | 3.2479 | 0.5650 |
0.5003 | 16.9916 | 1268 | 3.2445 | 0.5655 |
0.4683 | 17.9966 | 1343 | 3.2800 | 0.5638 |
0.457 | 18.9883 | 1417 | 3.4280 | 0.5640 |
0.457 | 19.9933 | 1492 | 3.4113 | 0.5662 |
0.4441 | 20.9983 | 1567 | 3.4731 | 0.5637 |
0.4327 | 21.9899 | 1641 | 3.5407 | 0.5639 |
0.4308 | 22.9950 | 1716 | 3.4811 | 0.5640 |
0.4308 | 24.0 | 1791 | 3.5854 | 0.5642 |
0.4245 | 24.9916 | 1865 | 3.5206 | 0.5640 |
0.416 | 25.9966 | 1940 | 3.6091 | 0.5638 |
0.4173 | 26.9883 | 2014 | 3.5707 | 0.5643 |
0.4173 | 27.9933 | 2089 | 3.6671 | 0.5648 |
0.4117 | 28.9983 | 2164 | 3.6267 | 0.5631 |
0.409 | 29.9899 | 2238 | 3.6658 | 0.5604 |
0.4085 | 30.9950 | 2313 | 3.6984 | 0.5621 |
0.4085 | 32.0 | 2388 | 3.6584 | 0.5660 |
0.403 | 32.9916 | 2462 | 3.5848 | 0.5626 |
0.404 | 33.9966 | 2537 | 3.6365 | 0.5631 |
0.4013 | 34.9883 | 2611 | 3.7047 | 0.5647 |
0.4013 | 35.9933 | 2686 | 3.7735 | 0.5643 |
0.3987 | 36.9983 | 2761 | 3.6867 | 0.5657 |
0.3951 | 37.9899 | 2835 | 3.7349 | 0.5662 |
0.3971 | 38.9950 | 2910 | 3.7173 | 0.5643 |
0.3971 | 40.0 | 2985 | 3.8004 | 0.5643 |
0.3939 | 40.9916 | 3059 | 3.8041 | 0.5636 |
0.3912 | 41.9966 | 3134 | 3.8263 | 0.5648 |
0.3941 | 42.9883 | 3208 | 3.7954 | 0.5646 |
0.3941 | 43.9933 | 3283 | 3.8001 | 0.5637 |
0.3878 | 44.9983 | 3358 | 3.8438 | 0.5634 |
0.3879 | 45.9899 | 3432 | 3.8626 | 0.5631 |
0.3907 | 46.9950 | 3507 | 3.7882 | 0.5645 |
0.3907 | 48.0 | 3582 | 3.8001 | 0.5622 |
0.3864 | 48.9916 | 3656 | 3.7201 | 0.5609 |
0.3871 | 49.5812 | 3700 | 3.8632 | 0.5660 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1