lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3_5e-5_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 2.9168
- Accuracy: 0.6388
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.3988 | 1.0 | 187 | 0.6661 | 1.2107 |
1.1977 | 2.0 | 375 | 0.6676 | 1.1987 |
1.1458 | 3.0 | 562 | 0.6676 | 1.1964 |
1.0707 | 4.0 | 750 | 0.6666 | 1.2088 |
1.0066 | 5.0 | 937 | 0.6652 | 1.2342 |
0.9353 | 6.0 | 1125 | 0.6628 | 1.2646 |
0.8629 | 7.0 | 1312 | 0.6617 | 1.2991 |
0.7933 | 8.0 | 1500 | 0.6596 | 1.3467 |
0.7185 | 9.0 | 1687 | 0.6575 | 1.3917 |
0.6489 | 10.0 | 1875 | 0.6550 | 1.4609 |
0.586 | 11.0 | 2062 | 0.6531 | 1.5205 |
0.5267 | 12.0 | 2250 | 0.6518 | 1.5616 |
0.4702 | 13.0 | 2437 | 0.6499 | 1.6518 |
0.42 | 14.0 | 2625 | 0.6481 | 1.7193 |
0.3811 | 15.0 | 2812 | 0.6459 | 1.8016 |
0.3373 | 16.0 | 3000 | 0.6465 | 1.8556 |
0.284 | 17.0 | 3187 | 0.6443 | 1.9407 |
0.25 | 18.0 | 3375 | 0.6436 | 1.9760 |
0.2274 | 19.0 | 3562 | 0.6424 | 2.1003 |
0.2033 | 20.0 | 3750 | 0.6425 | 2.1419 |
0.1832 | 21.0 | 3937 | 0.6405 | 2.2005 |
0.1678 | 22.0 | 4125 | 0.6397 | 2.2465 |
0.1505 | 23.0 | 4312 | 0.6400 | 2.2928 |
0.1406 | 24.0 | 4500 | 0.6400 | 2.3691 |
0.1214 | 25.0 | 4687 | 0.6390 | 2.4100 |
0.1128 | 26.0 | 4875 | 0.6382 | 2.4848 |
0.1076 | 27.0 | 5062 | 0.6390 | 2.5469 |
0.1046 | 28.0 | 5250 | 0.6392 | 2.5205 |
0.1007 | 29.0 | 5437 | 0.6382 | 2.5751 |
0.0967 | 30.0 | 5625 | 0.6389 | 2.5988 |
0.0947 | 31.0 | 5812 | 0.6391 | 2.6168 |
0.0914 | 32.0 | 6000 | 0.6393 | 2.6663 |
0.0834 | 33.0 | 6187 | 0.6395 | 2.6627 |
0.0827 | 34.0 | 6375 | 0.6383 | 2.6657 |
0.0818 | 35.0 | 6562 | 0.6390 | 2.6942 |
0.0817 | 36.0 | 6750 | 0.6384 | 2.7361 |
0.0799 | 37.0 | 6937 | 0.6387 | 2.7283 |
0.0784 | 38.0 | 7125 | 0.6380 | 2.7540 |
0.0788 | 39.0 | 7312 | 0.6388 | 2.7975 |
0.079 | 40.0 | 7500 | 0.6391 | 2.7849 |
0.0734 | 41.0 | 7687 | 0.6384 | 2.8045 |
0.0735 | 42.0 | 7875 | 0.6389 | 2.8060 |
0.073 | 43.0 | 8062 | 0.6387 | 2.8026 |
0.0737 | 44.0 | 8250 | 0.6386 | 2.8394 |
0.0736 | 45.0 | 8437 | 0.6391 | 2.8118 |
0.0724 | 46.0 | 8625 | 0.6388 | 2.8495 |
0.0721 | 47.0 | 8812 | 0.6390 | 2.8442 |
0.0719 | 48.0 | 9000 | 0.6384 | 2.8518 |
0.0687 | 49.0 | 9187 | 0.6385 | 2.8879 |
0.0699 | 49.87 | 9350 | 0.6388 | 2.9168 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3_5e-5_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3_5e-5_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3self-reported0.639