lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3_5e-5_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.9168
  • Accuracy: 0.6388

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 50.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.3988 1.0 187 0.6661 1.2107
1.1977 2.0 375 0.6676 1.1987
1.1458 3.0 562 0.6676 1.1964
1.0707 4.0 750 0.6666 1.2088
1.0066 5.0 937 0.6652 1.2342
0.9353 6.0 1125 0.6628 1.2646
0.8629 7.0 1312 0.6617 1.2991
0.7933 8.0 1500 0.6596 1.3467
0.7185 9.0 1687 0.6575 1.3917
0.6489 10.0 1875 0.6550 1.4609
0.586 11.0 2062 0.6531 1.5205
0.5267 12.0 2250 0.6518 1.5616
0.4702 13.0 2437 0.6499 1.6518
0.42 14.0 2625 0.6481 1.7193
0.3811 15.0 2812 0.6459 1.8016
0.3373 16.0 3000 0.6465 1.8556
0.284 17.0 3187 0.6443 1.9407
0.25 18.0 3375 0.6436 1.9760
0.2274 19.0 3562 0.6424 2.1003
0.2033 20.0 3750 0.6425 2.1419
0.1832 21.0 3937 0.6405 2.2005
0.1678 22.0 4125 0.6397 2.2465
0.1505 23.0 4312 0.6400 2.2928
0.1406 24.0 4500 0.6400 2.3691
0.1214 25.0 4687 0.6390 2.4100
0.1128 26.0 4875 0.6382 2.4848
0.1076 27.0 5062 0.6390 2.5469
0.1046 28.0 5250 0.6392 2.5205
0.1007 29.0 5437 0.6382 2.5751
0.0967 30.0 5625 0.6389 2.5988
0.0947 31.0 5812 0.6391 2.6168
0.0914 32.0 6000 0.6393 2.6663
0.0834 33.0 6187 0.6395 2.6627
0.0827 34.0 6375 0.6383 2.6657
0.0818 35.0 6562 0.6390 2.6942
0.0817 36.0 6750 0.6384 2.7361
0.0799 37.0 6937 0.6387 2.7283
0.0784 38.0 7125 0.6380 2.7540
0.0788 39.0 7312 0.6388 2.7975
0.079 40.0 7500 0.6391 2.7849
0.0734 41.0 7687 0.6384 2.8045
0.0735 42.0 7875 0.6389 2.8060
0.073 43.0 8062 0.6387 2.8026
0.0737 44.0 8250 0.6386 2.8394
0.0736 45.0 8437 0.6391 2.8118
0.0724 46.0 8625 0.6388 2.8495
0.0721 47.0 8812 0.6390 2.8442
0.0719 48.0 9000 0.6384 2.8518
0.0687 49.0 9187 0.6385 2.8879
0.0699 49.87 9350 0.6388 2.9168

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3_5e-5_lora2

Finetuned
(619)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3_5e-5_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_reciteonly_qa_v3
    self-reported
    0.639