lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4649
  • Accuracy: 0.7967

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.8276 1.0 529 0.6129 1.6297
1.6971 2.0 1058 0.6290 1.5016
1.4581 3.0 1587 0.6485 1.3573
1.2293 4.0 2116 0.6700 1.1989
0.9705 5.0 2645 0.6936 1.0435
0.7526 6.0 3174 0.7159 0.8995
0.5841 7.0 3703 0.7358 0.7834
0.4653 8.0 4232 0.7514 0.6874
0.3755 9.0 4761 0.7667 0.5926
0.3156 10.0 5290 0.7757 0.5410
0.2652 11.0 5819 0.7829 0.5042
0.2319 12.0 6348 0.4819 0.7874
0.2047 13.0 6877 0.4747 0.7902
0.1889 14.0 7406 0.4667 0.7927
0.1728 15.0 7935 0.4688 0.7930
0.162 16.0 8464 0.4614 0.7947
0.1512 17.0 8993 0.4588 0.7958
0.1478 18.0 9522 0.4614 0.7957
0.1427 19.0 10051 0.4582 0.7970
0.1371 20.0 10580 0.4649 0.7967

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(272)
this model

Dataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3_Qwen_Qwen1.5-4B_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_recite_qa_v3
    self-reported
    0.797