lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_3e-5_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 2.5308
- Accuracy: 0.5512
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.9148 | 0.9973 | 187 | 1.6426 | 0.5706 |
1.6179 | 2.0 | 375 | 1.6183 | 0.5730 |
1.5284 | 2.9973 | 562 | 1.6164 | 0.5749 |
1.3953 | 4.0 | 750 | 1.6388 | 0.5725 |
1.2664 | 4.9973 | 937 | 1.6860 | 0.5706 |
1.1544 | 6.0 | 1125 | 1.7575 | 0.5677 |
1.0393 | 6.9973 | 1312 | 1.8340 | 0.5649 |
0.946 | 8.0 | 1500 | 1.9019 | 0.5624 |
0.814 | 8.9973 | 1687 | 2.0181 | 0.5598 |
0.7542 | 10.0 | 1875 | 2.0828 | 0.5576 |
0.6946 | 10.9973 | 2062 | 2.1505 | 0.5564 |
0.6544 | 12.0 | 2250 | 2.2276 | 0.5562 |
0.6226 | 12.9973 | 2437 | 2.2688 | 0.5541 |
0.5958 | 14.0 | 2625 | 2.3551 | 0.5526 |
0.5789 | 14.9973 | 2812 | 2.4366 | 0.5510 |
0.5672 | 16.0 | 3000 | 2.4187 | 0.5533 |
0.5294 | 16.9973 | 3187 | 2.4533 | 0.5522 |
0.5261 | 18.0 | 3375 | 2.4909 | 0.5514 |
0.5227 | 18.9973 | 3562 | 2.5120 | 0.5519 |
0.5196 | 19.9467 | 3740 | 2.5308 | 0.5512 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 0
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_3e-5_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_qa_Qwen_Qwen1.5-4B_3e-5_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_qaself-reported0.551