lmind_nq_train6000_eval6489_v1_docidx_v3_meta-llama_Llama-2-7b-hf_3e-5_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 4.1668
- Accuracy: 0.4433
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4104 | 1.0 | 341 | 3.3575 | 0.4537 |
1.389 | 2.0 | 683 | 3.4180 | 0.4544 |
1.3414 | 3.0 | 1024 | 3.5119 | 0.4548 |
1.3002 | 4.0 | 1366 | 3.5288 | 0.4554 |
1.2574 | 5.0 | 1707 | 3.6893 | 0.4539 |
1.2258 | 6.0 | 2049 | 3.7259 | 0.4562 |
1.1844 | 7.0 | 2390 | 3.7244 | 0.4559 |
1.1363 | 8.0 | 2732 | 3.8139 | 0.4544 |
1.0903 | 9.0 | 3073 | 3.9116 | 0.4524 |
1.0538 | 10.0 | 3415 | 3.9220 | 0.4516 |
0.9971 | 11.0 | 3756 | 3.9673 | 0.4514 |
0.9699 | 12.0 | 4098 | 4.0336 | 0.4508 |
0.9235 | 13.0 | 4439 | 4.0020 | 0.4493 |
0.891 | 14.0 | 4781 | 4.0716 | 0.4477 |
0.845 | 15.0 | 5122 | 4.0992 | 0.4477 |
0.8009 | 16.0 | 5464 | 4.0933 | 0.4464 |
0.782 | 17.0 | 5805 | 4.1283 | 0.4467 |
0.7294 | 18.0 | 6147 | 4.1643 | 0.4456 |
0.6792 | 19.0 | 6488 | 4.1859 | 0.4449 |
0.6672 | 19.97 | 6820 | 4.1668 | 0.4433 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_meta-llama_Llama-2-7b-hf_3e-5_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_meta-llama_Llama-2-7b-hf_3e-5_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3self-reported0.443