File size: 5,097 Bytes
a46e1a5
1807cf8
 
a46e1a5
 
e218399
 
a46e1a5
 
 
 
e218399
 
 
 
 
 
 
 
 
 
 
a46e1a5
 
 
 
 
 
 
e218399
a46e1a5
aec39c2
e218399
a46e1a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807cf8
a46e1a5
 
 
 
1807cf8
a46e1a5
 
 
 
 
 
 
 
 
aec39c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a46e1a5
 
 
 
1807cf8
a46e1a5
1807cf8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
metrics:
- accuracy
model-index:
- name: lmind_nq_train6000_eval6489_v1_docidx_v3_5e-4_lora2
  results:
  - task:
      name: Causal Language Modeling
      type: text-generation
    dataset:
      name: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
      type: tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.19446153846153846
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# lmind_nq_train6000_eval6489_v1_docidx_v3_5e-4_lora2

This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset.
It achieves the following results on the evaluation set:
- Loss: 8.0353
- Accuracy: 0.1945

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0

### Training results

| Training Loss | Epoch | Step  | Accuracy | Validation Loss |
|:-------------:|:-----:|:-----:|:--------:|:---------------:|
| 1.3903        | 1.0   | 341   | 0.4564   | 3.9959          |
| 1.2           | 2.0   | 683   | 0.4396   | 4.5103          |
| 0.9155        | 3.0   | 1024  | 0.4285   | 4.8751          |
| 0.6446        | 4.0   | 1366  | 0.4326   | 4.8178          |
| 0.455         | 5.0   | 1707  | 0.4404   | 4.9434          |
| 0.3104        | 6.0   | 2049  | 0.4313   | 5.2226          |
| 0.2187        | 7.0   | 2390  | 0.4296   | 5.1633          |
| 0.1903        | 8.0   | 2732  | 0.4377   | 5.0743          |
| 0.1639        | 9.0   | 3073  | 0.4339   | 5.2491          |
| 0.1685        | 10.0  | 3415  | 0.4356   | 5.1677          |
| 0.1575        | 11.0  | 3756  | 0.4358   | 5.0421          |
| 0.151         | 12.0  | 4098  | 0.4338   | 5.1801          |
| 0.1586        | 13.0  | 4439  | 0.4347   | 5.2149          |
| 0.1492        | 14.0  | 4781  | 0.4356   | 5.1413          |
| 0.1539        | 15.0  | 5122  | 0.4309   | 5.2818          |
| 0.1472        | 16.0  | 5464  | 0.4372   | 5.0858          |
| 0.1503        | 17.0  | 5805  | 0.4341   | 5.1719          |
| 0.1449        | 18.0  | 6147  | 0.4301   | 5.3105          |
| 0.1384        | 19.0  | 6488  | 0.4263   | 5.2427          |
| 0.1472        | 20.0  | 6830  | 0.4309   | 5.2501          |
| 0.1389        | 21.0  | 7171  | 0.4309   | 5.0945          |
| 0.1456        | 22.0  | 7513  | 0.4327   | 5.2462          |
| 0.1398        | 23.0  | 7854  | 0.428    | 5.4476          |
| 0.1342        | 24.0  | 8196  | 0.4322   | 5.2605          |
| 0.1414        | 25.0  | 8537  | 0.4284   | 5.3590          |
| 0.1364        | 26.0  | 8879  | 0.4277   | 5.4423          |
| 0.1427        | 27.0  | 9220  | 0.4242   | 5.5243          |
| 0.1351        | 28.0  | 9562  | 0.4295   | 5.4508          |
| 0.1412        | 29.0  | 9903  | 0.4302   | 5.3767          |
| 0.1369        | 30.0  | 10245 | 0.4257   | 5.4378          |
| 0.1332        | 31.0  | 10586 | 0.4288   | 5.5004          |
| 0.14          | 32.0  | 10928 | 0.4261   | 5.6715          |
| 0.1336        | 33.0  | 11269 | 0.4268   | 5.5130          |
| 0.1412        | 34.0  | 11611 | 0.4266   | 5.5420          |
| 0.1357        | 35.0  | 11952 | 0.4182   | 5.6517          |
| 0.1363        | 36.0  | 12294 | 0.4208   | 5.4598          |
| 0.134         | 37.0  | 12635 | 0.4221   | 5.6220          |
| 0.1255        | 38.0  | 12977 | 0.4227   | 5.6988          |
| 0.1303        | 39.0  | 13318 | 0.4252   | 5.5511          |
| 0.2073        | 40.0  | 13660 | 0.4109   | 5.6976          |
| 0.1609        | 41.0  | 14001 | 0.4095   | 5.6908          |
| 0.1384        | 42.0  | 14343 | 0.4166   | 5.7460          |
| 0.1401        | 43.0  | 14684 | 0.4145   | 5.6377          |
| 0.1535        | 44.0  | 15026 | 0.4209   | 5.5295          |
| 0.1542        | 45.0  | 15367 | 0.2157   | 7.6505          |
| 7.7307        | 46.0  | 15709 | 0.2470   | 6.9279          |
| 7.3843        | 47.0  | 16050 | 0.1716   | 8.9680          |
| 8.5059        | 48.0  | 16392 | 0.1716   | 8.8324          |
| 7.9257        | 49.0  | 16733 | 0.1924   | 7.8902          |
| 7.855         | 49.93 | 17050 | 0.1945   | 8.0353          |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1