lmind_nq_train6000_eval6489_v1_docidx_v3_5e-4_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 8.0353
- Accuracy: 0.1945
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.3903 | 1.0 | 341 | 0.4564 | 3.9959 |
1.2 | 2.0 | 683 | 0.4396 | 4.5103 |
0.9155 | 3.0 | 1024 | 0.4285 | 4.8751 |
0.6446 | 4.0 | 1366 | 0.4326 | 4.8178 |
0.455 | 5.0 | 1707 | 0.4404 | 4.9434 |
0.3104 | 6.0 | 2049 | 0.4313 | 5.2226 |
0.2187 | 7.0 | 2390 | 0.4296 | 5.1633 |
0.1903 | 8.0 | 2732 | 0.4377 | 5.0743 |
0.1639 | 9.0 | 3073 | 0.4339 | 5.2491 |
0.1685 | 10.0 | 3415 | 0.4356 | 5.1677 |
0.1575 | 11.0 | 3756 | 0.4358 | 5.0421 |
0.151 | 12.0 | 4098 | 0.4338 | 5.1801 |
0.1586 | 13.0 | 4439 | 0.4347 | 5.2149 |
0.1492 | 14.0 | 4781 | 0.4356 | 5.1413 |
0.1539 | 15.0 | 5122 | 0.4309 | 5.2818 |
0.1472 | 16.0 | 5464 | 0.4372 | 5.0858 |
0.1503 | 17.0 | 5805 | 0.4341 | 5.1719 |
0.1449 | 18.0 | 6147 | 0.4301 | 5.3105 |
0.1384 | 19.0 | 6488 | 0.4263 | 5.2427 |
0.1472 | 20.0 | 6830 | 0.4309 | 5.2501 |
0.1389 | 21.0 | 7171 | 0.4309 | 5.0945 |
0.1456 | 22.0 | 7513 | 0.4327 | 5.2462 |
0.1398 | 23.0 | 7854 | 0.428 | 5.4476 |
0.1342 | 24.0 | 8196 | 0.4322 | 5.2605 |
0.1414 | 25.0 | 8537 | 0.4284 | 5.3590 |
0.1364 | 26.0 | 8879 | 0.4277 | 5.4423 |
0.1427 | 27.0 | 9220 | 0.4242 | 5.5243 |
0.1351 | 28.0 | 9562 | 0.4295 | 5.4508 |
0.1412 | 29.0 | 9903 | 0.4302 | 5.3767 |
0.1369 | 30.0 | 10245 | 0.4257 | 5.4378 |
0.1332 | 31.0 | 10586 | 0.4288 | 5.5004 |
0.14 | 32.0 | 10928 | 0.4261 | 5.6715 |
0.1336 | 33.0 | 11269 | 0.4268 | 5.5130 |
0.1412 | 34.0 | 11611 | 0.4266 | 5.5420 |
0.1357 | 35.0 | 11952 | 0.4182 | 5.6517 |
0.1363 | 36.0 | 12294 | 0.4208 | 5.4598 |
0.134 | 37.0 | 12635 | 0.4221 | 5.6220 |
0.1255 | 38.0 | 12977 | 0.4227 | 5.6988 |
0.1303 | 39.0 | 13318 | 0.4252 | 5.5511 |
0.2073 | 40.0 | 13660 | 0.4109 | 5.6976 |
0.1609 | 41.0 | 14001 | 0.4095 | 5.6908 |
0.1384 | 42.0 | 14343 | 0.4166 | 5.7460 |
0.1401 | 43.0 | 14684 | 0.4145 | 5.6377 |
0.1535 | 44.0 | 15026 | 0.4209 | 5.5295 |
0.1542 | 45.0 | 15367 | 0.2157 | 7.6505 |
7.7307 | 46.0 | 15709 | 0.2470 | 6.9279 |
7.3843 | 47.0 | 16050 | 0.1716 | 8.9680 |
8.5059 | 48.0 | 16392 | 0.1716 | 8.8324 |
7.9257 | 49.0 | 16733 | 0.1924 | 7.8902 |
7.855 | 49.93 | 17050 | 0.1945 | 8.0353 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_5e-4_lora2
Base model
meta-llama/Llama-2-7b-hfDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_5e-4_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3self-reported0.194