Model save
Browse files
README.md
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: other
|
3 |
+
base_model: Qwen/Qwen1.5-4B
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: lmind_nq_train6000_eval6489_v1_docidx_v3_3e-5_lora2
|
10 |
+
results: []
|
11 |
+
library_name: peft
|
12 |
+
---
|
13 |
+
|
14 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
15 |
+
should probably proofread and complete it, then remove this comment. -->
|
16 |
+
|
17 |
+
# lmind_nq_train6000_eval6489_v1_docidx_v3_3e-5_lora2
|
18 |
+
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on an unknown dataset.
|
20 |
+
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 6.3965
|
22 |
+
- Accuracy: 0.4106
|
23 |
+
|
24 |
+
## Model description
|
25 |
+
|
26 |
+
More information needed
|
27 |
+
|
28 |
+
## Intended uses & limitations
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Training and evaluation data
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training procedure
|
37 |
+
|
38 |
+
### Training hyperparameters
|
39 |
+
|
40 |
+
The following hyperparameters were used during training:
|
41 |
+
- learning_rate: 3e-05
|
42 |
+
- train_batch_size: 1
|
43 |
+
- eval_batch_size: 2
|
44 |
+
- seed: 42
|
45 |
+
- distributed_type: multi-GPU
|
46 |
+
- num_devices: 4
|
47 |
+
- gradient_accumulation_steps: 8
|
48 |
+
- total_train_batch_size: 32
|
49 |
+
- total_eval_batch_size: 8
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: constant
|
52 |
+
- lr_scheduler_warmup_ratio: 0.05
|
53 |
+
- num_epochs: 50.0
|
54 |
+
|
55 |
+
### Training results
|
56 |
+
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
58 |
+
|:-------------:|:-------:|:-----:|:---------------:|:--------:|
|
59 |
+
| 1.9686 | 0.9985 | 341 | 3.6919 | 0.4374 |
|
60 |
+
| 1.9337 | 2.0 | 683 | 3.7485 | 0.4476 |
|
61 |
+
| 1.9033 | 2.9985 | 1024 | 3.8826 | 0.4496 |
|
62 |
+
| 1.857 | 4.0 | 1366 | 3.9701 | 0.4481 |
|
63 |
+
| 1.8042 | 4.9985 | 1707 | 4.1171 | 0.4473 |
|
64 |
+
| 1.7443 | 6.0 | 2049 | 4.1837 | 0.4470 |
|
65 |
+
| 1.7019 | 6.9985 | 2390 | 4.2604 | 0.4462 |
|
66 |
+
| 1.6305 | 8.0 | 2732 | 4.4065 | 0.4415 |
|
67 |
+
| 1.6056 | 8.9985 | 3073 | 4.4487 | 0.4398 |
|
68 |
+
| 1.5521 | 10.0 | 3415 | 4.5474 | 0.4389 |
|
69 |
+
| 1.4934 | 10.9985 | 3756 | 4.5898 | 0.4367 |
|
70 |
+
| 1.4287 | 12.0 | 4098 | 4.6911 | 0.4355 |
|
71 |
+
| 1.3846 | 12.9985 | 4439 | 4.7629 | 0.4355 |
|
72 |
+
| 1.3185 | 14.0 | 4781 | 4.7585 | 0.4328 |
|
73 |
+
| 1.2667 | 14.9985 | 5122 | 4.9389 | 0.4309 |
|
74 |
+
| 1.2144 | 16.0 | 5464 | 4.8987 | 0.4303 |
|
75 |
+
| 1.1708 | 16.9985 | 5805 | 5.0017 | 0.4297 |
|
76 |
+
| 1.1146 | 18.0 | 6147 | 4.9778 | 0.4307 |
|
77 |
+
| 1.0531 | 18.9985 | 6488 | 5.1216 | 0.4287 |
|
78 |
+
| 1.0158 | 20.0 | 6830 | 5.1210 | 0.4273 |
|
79 |
+
| 0.9555 | 20.9985 | 7171 | 5.1988 | 0.4293 |
|
80 |
+
| 0.9205 | 22.0 | 7513 | 5.2240 | 0.4270 |
|
81 |
+
| 0.8711 | 22.9985 | 7854 | 5.3467 | 0.4251 |
|
82 |
+
| 0.8082 | 24.0 | 8196 | 5.3555 | 0.4243 |
|
83 |
+
| 0.7854 | 24.9985 | 8537 | 5.4629 | 0.4241 |
|
84 |
+
| 0.7359 | 26.0 | 8879 | 5.4699 | 0.4231 |
|
85 |
+
| 0.7002 | 26.9985 | 9220 | 5.5053 | 0.4211 |
|
86 |
+
| 0.6684 | 28.0 | 9562 | 5.5584 | 0.4214 |
|
87 |
+
| 0.6236 | 28.9985 | 9903 | 5.6117 | 0.4196 |
|
88 |
+
| 0.5866 | 30.0 | 10245 | 5.5696 | 0.4196 |
|
89 |
+
| 0.5554 | 30.9985 | 10586 | 5.6579 | 0.4184 |
|
90 |
+
| 0.5291 | 32.0 | 10928 | 5.7396 | 0.4178 |
|
91 |
+
| 0.4968 | 32.9985 | 11269 | 5.8110 | 0.4181 |
|
92 |
+
| 0.4635 | 34.0 | 11611 | 5.8719 | 0.4167 |
|
93 |
+
| 0.4465 | 34.9985 | 11952 | 5.8658 | 0.4162 |
|
94 |
+
| 0.4184 | 36.0 | 12294 | 5.8887 | 0.4147 |
|
95 |
+
| 0.4002 | 36.9985 | 12635 | 5.9950 | 0.4165 |
|
96 |
+
| 0.3716 | 38.0 | 12977 | 5.9991 | 0.4155 |
|
97 |
+
| 0.3537 | 38.9985 | 13318 | 6.0723 | 0.4151 |
|
98 |
+
| 0.3361 | 40.0 | 13660 | 6.0777 | 0.4127 |
|
99 |
+
| 0.3199 | 40.9985 | 14001 | 6.1181 | 0.4150 |
|
100 |
+
| 0.303 | 42.0 | 14343 | 6.0911 | 0.4134 |
|
101 |
+
| 0.2797 | 42.9985 | 14684 | 6.1607 | 0.4145 |
|
102 |
+
| 0.2762 | 44.0 | 15026 | 6.1128 | 0.4126 |
|
103 |
+
| 0.2633 | 44.9985 | 15367 | 6.1446 | 0.4127 |
|
104 |
+
| 0.2508 | 46.0 | 15709 | 6.2330 | 0.4134 |
|
105 |
+
| 0.2397 | 46.9985 | 16050 | 6.2369 | 0.4125 |
|
106 |
+
| 0.2259 | 48.0 | 16392 | 6.2775 | 0.4142 |
|
107 |
+
| 0.2228 | 48.9985 | 16733 | 6.2132 | 0.4128 |
|
108 |
+
| 0.2098 | 49.9268 | 17050 | 6.3965 | 0.4106 |
|
109 |
+
|
110 |
+
|
111 |
+
### Framework versions
|
112 |
+
|
113 |
+
- PEFT 0.5.0
|
114 |
+
- Transformers 4.41.1
|
115 |
+
- Pytorch 2.1.0+cu121
|
116 |
+
- Datasets 2.19.1
|
117 |
+
- Tokenizers 0.19.1
|