lmind_nq_train6000_eval6489_v1_docidx_v3_3e-5_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.9207
- Accuracy: 0.4310
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.4104 | 1.0 | 341 | 0.4537 | 3.3575 |
1.389 | 2.0 | 683 | 0.4544 | 3.4180 |
1.3414 | 3.0 | 1024 | 0.4548 | 3.5119 |
1.3002 | 4.0 | 1366 | 0.4554 | 3.5288 |
1.2574 | 5.0 | 1707 | 0.4539 | 3.6893 |
1.2258 | 6.0 | 2049 | 0.4562 | 3.7259 |
1.1844 | 7.0 | 2390 | 0.4559 | 3.7244 |
1.1363 | 8.0 | 2732 | 0.4544 | 3.8139 |
1.0903 | 9.0 | 3073 | 0.4524 | 3.9116 |
1.0538 | 10.0 | 3415 | 0.4516 | 3.9220 |
0.9971 | 11.0 | 3756 | 0.4514 | 3.9673 |
0.9699 | 12.0 | 4098 | 0.4508 | 4.0336 |
0.9235 | 13.0 | 4439 | 0.4493 | 4.0020 |
0.891 | 14.0 | 4781 | 0.4477 | 4.0716 |
0.845 | 15.0 | 5122 | 0.4477 | 4.0992 |
0.8009 | 16.0 | 5464 | 0.4464 | 4.0933 |
0.782 | 17.0 | 5805 | 0.4467 | 4.1283 |
0.7294 | 18.0 | 6147 | 0.4456 | 4.1643 |
0.6792 | 19.0 | 6488 | 0.4449 | 4.1859 |
0.6672 | 20.0 | 6830 | 0.4437 | 4.2010 |
0.6258 | 21.0 | 7171 | 0.4429 | 4.2300 |
0.599 | 22.0 | 7513 | 0.4419 | 4.2532 |
0.5625 | 23.0 | 7854 | 0.4430 | 4.2937 |
0.5267 | 24.0 | 8196 | 0.4415 | 4.2548 |
0.5004 | 25.0 | 8537 | 0.4404 | 4.3325 |
0.4681 | 26.0 | 8879 | 0.4396 | 4.3162 |
0.4453 | 27.0 | 9220 | 0.4388 | 4.3771 |
0.4161 | 28.0 | 9562 | 0.4386 | 4.4060 |
0.3994 | 29.0 | 9903 | 0.4377 | 4.4688 |
0.3695 | 30.0 | 10245 | 0.4377 | 4.4645 |
0.3505 | 31.0 | 10586 | 0.4378 | 4.4624 |
0.3342 | 32.0 | 10928 | 0.4365 | 4.4630 |
0.3075 | 33.0 | 11269 | 0.4342 | 4.5444 |
0.2949 | 34.0 | 11611 | 0.4344 | 4.5481 |
0.2705 | 35.0 | 11952 | 0.4357 | 4.5614 |
0.2554 | 36.0 | 12294 | 0.4339 | 4.5910 |
0.2428 | 37.0 | 12635 | 0.4332 | 4.6458 |
0.2277 | 38.0 | 12977 | 0.4327 | 4.6553 |
0.2172 | 39.0 | 13318 | 0.4328 | 4.7071 |
0.2016 | 40.0 | 13660 | 0.4331 | 4.7180 |
0.1965 | 41.0 | 14001 | 0.4323 | 4.7568 |
0.1851 | 42.0 | 14343 | 0.4321 | 4.7562 |
0.1739 | 43.0 | 14684 | 0.4317 | 4.7874 |
0.1719 | 44.0 | 15004 | 4.8029 | 0.4323 |
0.1626 | 45.0 | 15346 | 4.7820 | 0.4318 |
0.1535 | 46.0 | 15687 | 4.8637 | 0.4315 |
0.1524 | 47.0 | 16029 | 4.8990 | 0.4315 |
0.1419 | 48.0 | 16370 | 4.8602 | 0.4309 |
0.1405 | 49.0 | 16712 | 4.8813 | 0.4301 |
0.134 | 49.99 | 17050 | 4.9207 | 0.4310 |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_docidx_v3_3e-5_lora2
Base model
meta-llama/Llama-2-7b-hf