lmind_nq_train6000_eval6489_v1_doc_qa_v3_Qwen_Qwen1.5-4B_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3 dataset. It achieves the following results on the evaluation set:
- Loss: 2.2737
- Accuracy: 0.5650
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.8352 | 1.0 | 529 | 1.6055 | 0.5747 |
1.7462 | 2.0 | 1058 | 1.6079 | 0.5756 |
1.573 | 3.0 | 1587 | 1.6726 | 0.5739 |
1.458 | 4.0 | 2116 | 1.7836 | 0.572 |
1.3123 | 5.0 | 2645 | 1.9306 | 0.5684 |
1.1892 | 6.0 | 3174 | 2.0004 | 0.5685 |
1.094 | 7.0 | 3703 | 2.0732 | 0.5684 |
1.0032 | 8.0 | 4232 | 2.1815 | 0.5667 |
0.892 | 9.0 | 4761 | 2.2088 | 0.5648 |
0.7887 | 10.0 | 5290 | 2.2737 | 0.5650 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 4
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_Qwen_Qwen1.5-4B_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_Qwen_Qwen1.5-4B_lora2
Evaluation results
- Accuracy on tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3self-reported0.565