Model save
Browse files
README.md
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama2
|
3 |
+
base_model: meta-llama/Llama-2-7b-hf
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
model-index:
|
9 |
+
- name: lmind_nq_train6000_eval6489_v1_doc_qa_v3_3e-4_lora2
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# lmind_nq_train6000_eval6489_v1_doc_qa_v3_3e-4_lora2
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [meta-llama/Llama-2-7b-hf](https://huggingface.co/meta-llama/Llama-2-7b-hf) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: nan
|
21 |
+
- Accuracy: 0.1684
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0003
|
41 |
+
- train_batch_size: 2
|
42 |
+
- eval_batch_size: 2
|
43 |
+
- seed: 42
|
44 |
+
- distributed_type: multi-GPU
|
45 |
+
- num_devices: 4
|
46 |
+
- gradient_accumulation_steps: 4
|
47 |
+
- total_train_batch_size: 32
|
48 |
+
- total_eval_batch_size: 8
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: constant
|
51 |
+
- lr_scheduler_warmup_ratio: 0.05
|
52 |
+
- num_epochs: 50.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
57 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
58 |
+
| 1.3822 | 1.0 | 529 | 1.2977 | 0.6172 |
|
59 |
+
| 1.2744 | 2.0 | 1058 | 1.3745 | 0.6032 |
|
60 |
+
| 1.1768 | 3.0 | 1587 | 1.3319 | 0.6157 |
|
61 |
+
| 0.9247 | 4.0 | 2116 | 1.4367 | 0.6102 |
|
62 |
+
| 1.1836 | 5.0 | 2645 | 1.9168 | 0.5569 |
|
63 |
+
| 2.035 | 6.0 | 3174 | 2.0794 | 0.5377 |
|
64 |
+
| 3.7483 | 7.0 | 3703 | 2.6723 | 0.4881 |
|
65 |
+
| 7.127 | 8.0 | 4232 | 7.0410 | 0.1922 |
|
66 |
+
| 7.5321 | 9.0 | 4761 | 6.6488 | 0.1941 |
|
67 |
+
| 7.3806 | 10.0 | 5290 | 6.8427 | 0.2197 |
|
68 |
+
| 7.8159 | 11.0 | 5819 | 6.8836 | 0.2197 |
|
69 |
+
| 7.975 | 12.0 | 6348 | 6.8763 | 0.2197 |
|
70 |
+
| 7.9902 | 13.0 | 6877 | 6.8726 | 0.2197 |
|
71 |
+
| 7.8585 | 14.0 | 7406 | 6.8236 | 0.2195 |
|
72 |
+
| 7.3449 | 15.0 | 7935 | 7.1997 | 0.1922 |
|
73 |
+
| 7.3133 | 16.0 | 8464 | 6.7455 | 0.1869 |
|
74 |
+
| 7.305 | 17.0 | 8993 | 6.7454 | 0.1869 |
|
75 |
+
| 7.7463 | 18.0 | 9522 | 8.8319 | 0.1870 |
|
76 |
+
| 9.9696 | 19.0 | 10051 | 10.0702 | 0.1692 |
|
77 |
+
| 9.9845 | 20.0 | 10580 | 10.0702 | 0.1692 |
|
78 |
+
| 9.9502 | 21.0 | 11109 | 10.0702 | 0.1692 |
|
79 |
+
| 9.9726 | 22.0 | 11638 | 10.0702 | 0.1692 |
|
80 |
+
| 9.9648 | 23.0 | 12167 | 10.0702 | 0.1692 |
|
81 |
+
| 9.9579 | 24.0 | 12696 | 10.0702 | 0.1692 |
|
82 |
+
| 9.9519 | 25.0 | 13225 | 10.0702 | 0.1692 |
|
83 |
+
| 9.9849 | 26.0 | 13754 | 10.0702 | 0.1692 |
|
84 |
+
| 9.9591 | 27.0 | 14283 | 10.0702 | 0.1692 |
|
85 |
+
| 9.9701 | 28.0 | 14812 | 10.0702 | 0.1692 |
|
86 |
+
| 9.998 | 29.0 | 15341 | 10.0702 | 0.1692 |
|
87 |
+
| 9.9878 | 30.0 | 15870 | 10.0702 | 0.1692 |
|
88 |
+
| 9.9882 | 31.0 | 16399 | 10.0702 | 0.1692 |
|
89 |
+
| 9.9741 | 32.0 | 16928 | 10.0702 | 0.1692 |
|
90 |
+
| 9.9545 | 33.0 | 17457 | 10.0702 | 0.1692 |
|
91 |
+
| 9.9538 | 34.0 | 17986 | 10.0702 | 0.1692 |
|
92 |
+
| 9.995 | 35.0 | 18515 | 10.0702 | 0.1692 |
|
93 |
+
| 9.974 | 36.0 | 19044 | 10.0702 | 0.1692 |
|
94 |
+
| 9.9763 | 37.0 | 19573 | 10.0702 | 0.1692 |
|
95 |
+
| 9.991 | 38.0 | 20102 | 10.0702 | 0.1692 |
|
96 |
+
| 9.9502 | 39.0 | 20631 | 10.0702 | 0.1692 |
|
97 |
+
| 9.9284 | 40.0 | 21160 | 10.0702 | 0.1692 |
|
98 |
+
| 12.7665 | 41.0 | 21689 | 9.6482 | 0.1747 |
|
99 |
+
| 1855.3142 | 42.0 | 22218 | nan | 0.1684 |
|
100 |
+
| 0.0 | 43.0 | 22747 | nan | 0.1684 |
|
101 |
+
| 0.0 | 44.0 | 23276 | nan | 0.1684 |
|
102 |
+
| 0.0 | 45.0 | 23805 | nan | 0.1684 |
|
103 |
+
| 0.0 | 46.0 | 24334 | nan | 0.1684 |
|
104 |
+
| 0.0 | 47.0 | 24863 | nan | 0.1684 |
|
105 |
+
| 0.0 | 48.0 | 25392 | nan | 0.1684 |
|
106 |
+
| 0.0 | 49.0 | 25921 | nan | 0.1684 |
|
107 |
+
| 0.0 | 50.0 | 26450 | nan | 0.1684 |
|
108 |
+
|
109 |
+
|
110 |
+
### Framework versions
|
111 |
+
|
112 |
+
- Transformers 4.34.0
|
113 |
+
- Pytorch 2.1.0+cu121
|
114 |
+
- Datasets 2.18.0
|
115 |
+
- Tokenizers 0.14.1
|