lmind_nq_train6000_eval6489_v1_doc_qa_v3_3e-4_lora2
This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on an unknown dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.1684
- Loss: nan
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 50.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
1.3822 | 1.0 | 529 | 0.6172 | 1.2977 |
1.2744 | 2.0 | 1058 | 0.6032 | 1.3745 |
1.1768 | 3.0 | 1587 | 0.6157 | 1.3319 |
0.9247 | 4.0 | 2116 | 0.6102 | 1.4367 |
1.1836 | 5.0 | 2645 | 0.5569 | 1.9168 |
2.035 | 6.0 | 3174 | 0.5377 | 2.0794 |
3.7483 | 7.0 | 3703 | 0.4881 | 2.6723 |
7.127 | 8.0 | 4232 | 0.1922 | 7.0410 |
7.5321 | 9.0 | 4761 | 0.1941 | 6.6488 |
7.3806 | 10.0 | 5290 | 0.2197 | 6.8427 |
7.8159 | 11.0 | 5819 | 0.2197 | 6.8836 |
7.975 | 12.0 | 6348 | 0.2197 | 6.8763 |
7.9902 | 13.0 | 6877 | 0.2197 | 6.8726 |
7.8585 | 14.0 | 7406 | 0.2195 | 6.8236 |
7.3449 | 15.0 | 7935 | 0.1922 | 7.1997 |
7.3133 | 16.0 | 8464 | 0.1869 | 6.7455 |
7.305 | 17.0 | 8993 | 0.1869 | 6.7454 |
7.7463 | 18.0 | 9522 | 0.1870 | 8.8319 |
9.9696 | 19.0 | 10051 | 0.1692 | 10.0702 |
9.9845 | 20.0 | 10580 | 0.1692 | 10.0702 |
9.9502 | 21.0 | 11109 | 0.1692 | 10.0702 |
9.9726 | 22.0 | 11638 | 0.1692 | 10.0702 |
9.9648 | 23.0 | 12167 | 0.1692 | 10.0702 |
9.9579 | 24.0 | 12696 | 0.1692 | 10.0702 |
9.9519 | 25.0 | 13225 | 0.1692 | 10.0702 |
9.9849 | 26.0 | 13754 | 0.1692 | 10.0702 |
9.9591 | 27.0 | 14283 | 0.1692 | 10.0702 |
9.9701 | 28.0 | 14812 | 0.1692 | 10.0702 |
9.998 | 29.0 | 15341 | 0.1692 | 10.0702 |
9.9878 | 30.0 | 15870 | 0.1692 | 10.0702 |
9.9882 | 31.0 | 16399 | 0.1692 | 10.0702 |
9.9741 | 32.0 | 16928 | 0.1692 | 10.0702 |
9.9545 | 33.0 | 17457 | 0.1692 | 10.0702 |
9.9538 | 34.0 | 17986 | 0.1692 | 10.0702 |
9.995 | 35.0 | 18515 | 0.1692 | 10.0702 |
9.974 | 36.0 | 19044 | 0.1692 | 10.0702 |
9.9763 | 37.0 | 19573 | 0.1692 | 10.0702 |
9.991 | 38.0 | 20102 | 0.1692 | 10.0702 |
9.9502 | 39.0 | 20631 | 0.1692 | 10.0702 |
9.9284 | 40.0 | 21160 | 0.1692 | 10.0702 |
12.7665 | 41.0 | 21689 | 0.1747 | 9.6482 |
1855.3142 | 42.0 | 22218 | 0.1684 | nan |
0.0 | 43.0 | 22747 | 0.1684 | nan |
0.0 | 44.0 | 23276 | 0.1684 | nan |
0.0 | 45.0 | 23805 | 0.1684 | nan |
0.0 | 46.0 | 24334 | 0.1684 | nan |
0.0 | 47.0 | 24863 | 0.1684 | nan |
0.0 | 48.0 | 25392 | 0.1684 | nan |
0.0 | 49.0 | 25921 | 0.1684 | nan |
0.0 | 50.0 | 26450 | 0.1684 | nan |
Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.14.1
Model tree for tyzhu/lmind_nq_train6000_eval6489_v1_doc_qa_v3_3e-4_lora2
Base model
meta-llama/Llama-2-7b-hf