lmind_hotpot_train8000_eval7405_v1_reciteonly_qa_Qwen_Qwen1.5-4B_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa dataset. It achieves the following results on the evaluation set:
- Loss: 1.9636
- Accuracy: 0.6657
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 10.0
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
1.4596 | 1.0 | 250 | 1.5119 | 0.6759 |
1.4057 | 2.0 | 500 | 1.5021 | 0.6767 |
1.3267 | 3.0 | 750 | 1.5067 | 0.6767 |
1.2354 | 4.0 | 1000 | 1.5289 | 0.6760 |
1.1245 | 5.0 | 1250 | 1.5733 | 0.6744 |
1.0235 | 6.0 | 1500 | 1.6228 | 0.6730 |
0.9119 | 7.0 | 1750 | 1.6996 | 0.6709 |
0.8037 | 8.0 | 2000 | 1.7718 | 0.6695 |
0.6868 | 9.0 | 2250 | 1.8491 | 0.6676 |
0.6049 | 10.0 | 2500 | 1.9636 | 0.6657 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 7
Model tree for tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa_Qwen_Qwen1.5-4B_lora2
Base model
Qwen/Qwen1.5-4BDataset used to train tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qa_Qwen_Qwen1.5-4B_lora2
Evaluation results
- Accuracy on tyzhu/lmind_hotpot_train8000_eval7405_v1_reciteonly_qaself-reported0.666