tyzhu's picture
End of training
d52ff10 verified
|
raw
history blame
2.59 kB
metadata
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
  - accuracy
model-index:
  - name: lmind_hotpot_train8000_eval7405_v1_qa_meta-llama_Llama-2-7b-hf_lora2
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
          type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5903037974683545

lmind_hotpot_train8000_eval7405_v1_qa_meta-llama_Llama-2-7b-hf_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 2.8216
  • Accuracy: 0.5903

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
1.7795 1.0 250 0.6075 1.8062
1.6437 2.0 500 1.8114 0.6077
1.4652 3.0 750 1.8675 0.6061
1.2631 4.0 1000 1.9843 0.6030
1.0724 5.0 1250 2.0921 0.6001
0.8917 6.0 1500 2.2463 0.5973
0.7235 7.0 1750 2.4073 0.5943
0.5997 8.0 2000 2.5738 0.5931
0.4943 9.0 2250 2.6983 0.5905
0.4381 10.0 2500 2.8216 0.5903

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1