tyzhu's picture
End of training
2a66303 verified
metadata
license: other
base_model: Qwen/Qwen1.5-4B
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
  - accuracy
model-index:
  - name: lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
          type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.4907619047619048
library_name: peft

lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9177
  • Accuracy: 0.4908

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.2624 1.0 250 0.5159 2.3220
2.0942 2.0 500 0.5176 2.3289
1.8479 3.0 750 0.5148 2.3997
1.6153 4.0 1000 0.5107 2.5067
1.3618 5.0 1250 0.5052 2.6641
1.1477 6.0 1500 0.5016 2.8411
0.9248 7.0 1750 0.4978 3.0246
0.7705 8.0 2000 0.4954 3.2090
0.6344 9.0 2250 0.4935 3.3400
0.5612 10.0 2500 0.4926 3.4933
0.4967 11.0 2750 3.5794 0.4917
0.4696 12.0 3000 3.6326 0.4914
0.4399 13.0 3250 3.7408 0.4920
0.4324 14.0 3500 3.7450 0.4915
0.4105 15.0 3750 3.8301 0.4922
0.4081 16.0 4000 3.8488 0.4921
0.3939 17.0 4250 3.8492 0.4913
0.3924 18.0 4500 3.8751 0.4915
0.382 19.0 4750 3.9337 0.4910
0.3832 20.0 5000 3.9177 0.4908

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1