metadata
license: other
base_model: Qwen/Qwen1.5-4B
tags:
- generated_from_trainer
datasets:
- tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
- accuracy
model-index:
- name: lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
results:
- task:
name: Causal Language Modeling
type: text-generation
dataset:
name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
- name: Accuracy
type: accuracy
value: 0.4907619047619048
library_name: peft
lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:
- Loss: 3.9177
- Accuracy: 0.4908
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
Training results
Training Loss | Epoch | Step | Accuracy | Validation Loss |
---|---|---|---|---|
2.2624 | 1.0 | 250 | 0.5159 | 2.3220 |
2.0942 | 2.0 | 500 | 0.5176 | 2.3289 |
1.8479 | 3.0 | 750 | 0.5148 | 2.3997 |
1.6153 | 4.0 | 1000 | 0.5107 | 2.5067 |
1.3618 | 5.0 | 1250 | 0.5052 | 2.6641 |
1.1477 | 6.0 | 1500 | 0.5016 | 2.8411 |
0.9248 | 7.0 | 1750 | 0.4978 | 3.0246 |
0.7705 | 8.0 | 2000 | 0.4954 | 3.2090 |
0.6344 | 9.0 | 2250 | 0.4935 | 3.3400 |
0.5612 | 10.0 | 2500 | 0.4926 | 3.4933 |
0.4967 | 11.0 | 2750 | 3.5794 | 0.4917 |
0.4696 | 12.0 | 3000 | 3.6326 | 0.4914 |
0.4399 | 13.0 | 3250 | 3.7408 | 0.4920 |
0.4324 | 14.0 | 3500 | 3.7450 | 0.4915 |
0.4105 | 15.0 | 3750 | 3.8301 | 0.4922 |
0.4081 | 16.0 | 4000 | 3.8488 | 0.4921 |
0.3939 | 17.0 | 4250 | 3.8492 | 0.4913 |
0.3924 | 18.0 | 4500 | 3.8751 | 0.4915 |
0.382 | 19.0 | 4750 | 3.9337 | 0.4910 |
0.3832 | 20.0 | 5000 | 3.9177 | 0.4908 |
Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1