tyzhu's picture
End of training
bd65a20 verified
|
raw
history blame
2.57 kB
metadata
license: other
base_model: Qwen/Qwen1.5-4B
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
  - accuracy
model-index:
  - name: lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
          type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.49263492063492065
library_name: peft

lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 3.4933
  • Accuracy: 0.4926

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 10.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.2624 1.0 250 2.3220 0.5159
2.0942 2.0 500 2.3289 0.5176
1.8479 3.0 750 2.3997 0.5148
1.6153 4.0 1000 2.5067 0.5107
1.3618 5.0 1250 2.6641 0.5052
1.1477 6.0 1500 2.8411 0.5016
0.9248 7.0 1750 3.0246 0.4978
0.7705 8.0 2000 3.2090 0.4954
0.6344 9.0 2250 3.3400 0.4935
0.5612 10.0 2500 3.4933 0.4926

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1