File size: 2,809 Bytes
7e12f2f e23bd90 7e12f2f e23bd90 7e12f2f e23bd90 7e12f2f e23bd90 7e12f2f e23bd90 7e12f2f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: other
base_model: Qwen/Qwen1.5-4B
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
results: []
library_name: peft
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 3.9177
- Accuracy: 0.4908
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_ratio: 0.05
- num_epochs: 20.0
### Training results
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|:-------------:|:-----:|:----:|:--------:|:---------------:|
| 2.2624 | 1.0 | 250 | 0.5159 | 2.3220 |
| 2.0942 | 2.0 | 500 | 0.5176 | 2.3289 |
| 1.8479 | 3.0 | 750 | 0.5148 | 2.3997 |
| 1.6153 | 4.0 | 1000 | 0.5107 | 2.5067 |
| 1.3618 | 5.0 | 1250 | 0.5052 | 2.6641 |
| 1.1477 | 6.0 | 1500 | 0.5016 | 2.8411 |
| 0.9248 | 7.0 | 1750 | 0.4978 | 3.0246 |
| 0.7705 | 8.0 | 2000 | 0.4954 | 3.2090 |
| 0.6344 | 9.0 | 2250 | 0.4935 | 3.3400 |
| 0.5612 | 10.0 | 2500 | 0.4926 | 3.4933 |
| 0.4967 | 11.0 | 2750 | 3.5794 | 0.4917 |
| 0.4696 | 12.0 | 3000 | 3.6326 | 0.4914 |
| 0.4399 | 13.0 | 3250 | 3.7408 | 0.4920 |
| 0.4324 | 14.0 | 3500 | 3.7450 | 0.4915 |
| 0.4105 | 15.0 | 3750 | 3.8301 | 0.4922 |
| 0.4081 | 16.0 | 4000 | 3.8488 | 0.4921 |
| 0.3939 | 17.0 | 4250 | 3.8492 | 0.4913 |
| 0.3924 | 18.0 | 4500 | 3.8751 | 0.4915 |
| 0.382 | 19.0 | 4750 | 3.9337 | 0.4910 |
| 0.3832 | 20.0 | 5000 | 3.9177 | 0.4908 |
### Framework versions
- PEFT 0.5.0
- Transformers 4.40.2
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
|