Model save
Browse files
README.md
CHANGED
@@ -3,23 +3,11 @@ license: other
|
|
3 |
base_model: Qwen/Qwen1.5-4B
|
4 |
tags:
|
5 |
- generated_from_trainer
|
6 |
-
datasets:
|
7 |
-
- tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
|
8 |
metrics:
|
9 |
- accuracy
|
10 |
model-index:
|
11 |
- name: lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
|
12 |
-
results:
|
13 |
-
- task:
|
14 |
-
name: Causal Language Modeling
|
15 |
-
type: text-generation
|
16 |
-
dataset:
|
17 |
-
name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
|
18 |
-
type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
|
19 |
-
metrics:
|
20 |
-
- name: Accuracy
|
21 |
-
type: accuracy
|
22 |
-
value: 0.49263492063492065
|
23 |
library_name: peft
|
24 |
---
|
25 |
|
@@ -28,10 +16,10 @@ should probably proofread and complete it, then remove this comment. -->
|
|
28 |
|
29 |
# lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
|
30 |
|
31 |
-
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on
|
32 |
It achieves the following results on the evaluation set:
|
33 |
-
- Loss: 3.
|
34 |
-
- Accuracy: 0.
|
35 |
|
36 |
## Model description
|
37 |
|
@@ -62,22 +50,32 @@ The following hyperparameters were used during training:
|
|
62 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
63 |
- lr_scheduler_type: constant
|
64 |
- lr_scheduler_warmup_ratio: 0.05
|
65 |
-
- num_epochs:
|
66 |
|
67 |
### Training results
|
68 |
|
69 |
-
| Training Loss | Epoch | Step | Validation Loss |
|
70 |
-
|
71 |
-
| 2.2624 | 1.0 | 250 | 2.3220 |
|
72 |
-
| 2.0942 | 2.0 | 500 | 2.3289 |
|
73 |
-
| 1.8479 | 3.0 | 750 | 2.3997 |
|
74 |
-
| 1.6153 | 4.0 | 1000 | 2.5067 |
|
75 |
-
| 1.3618 | 5.0 | 1250 | 2.6641 |
|
76 |
-
| 1.1477 | 6.0 | 1500 | 2.8411 |
|
77 |
-
| 0.9248 | 7.0 | 1750 | 3.0246 |
|
78 |
-
| 0.7705 | 8.0 | 2000 | 3.2090 |
|
79 |
-
| 0.6344 | 9.0 | 2250 | 3.3400 |
|
80 |
-
| 0.5612 | 10.0 | 2500 | 3.4933 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
|
83 |
### Framework versions
|
|
|
3 |
base_model: Qwen/Qwen1.5-4B
|
4 |
tags:
|
5 |
- generated_from_trainer
|
|
|
|
|
6 |
metrics:
|
7 |
- accuracy
|
8 |
model-index:
|
9 |
- name: lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
|
10 |
+
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
library_name: peft
|
12 |
---
|
13 |
|
|
|
16 |
|
17 |
# lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_lora2
|
18 |
|
19 |
+
This model is a fine-tuned version of [Qwen/Qwen1.5-4B](https://huggingface.co/Qwen/Qwen1.5-4B) on an unknown dataset.
|
20 |
It achieves the following results on the evaluation set:
|
21 |
+
- Loss: 3.9177
|
22 |
+
- Accuracy: 0.4908
|
23 |
|
24 |
## Model description
|
25 |
|
|
|
50 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
- lr_scheduler_type: constant
|
52 |
- lr_scheduler_warmup_ratio: 0.05
|
53 |
+
- num_epochs: 20.0
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Accuracy | Validation Loss |
|
58 |
+
|:-------------:|:-----:|:----:|:--------:|:---------------:|
|
59 |
+
| 2.2624 | 1.0 | 250 | 0.5159 | 2.3220 |
|
60 |
+
| 2.0942 | 2.0 | 500 | 0.5176 | 2.3289 |
|
61 |
+
| 1.8479 | 3.0 | 750 | 0.5148 | 2.3997 |
|
62 |
+
| 1.6153 | 4.0 | 1000 | 0.5107 | 2.5067 |
|
63 |
+
| 1.3618 | 5.0 | 1250 | 0.5052 | 2.6641 |
|
64 |
+
| 1.1477 | 6.0 | 1500 | 0.5016 | 2.8411 |
|
65 |
+
| 0.9248 | 7.0 | 1750 | 0.4978 | 3.0246 |
|
66 |
+
| 0.7705 | 8.0 | 2000 | 0.4954 | 3.2090 |
|
67 |
+
| 0.6344 | 9.0 | 2250 | 0.4935 | 3.3400 |
|
68 |
+
| 0.5612 | 10.0 | 2500 | 0.4926 | 3.4933 |
|
69 |
+
| 0.4967 | 11.0 | 2750 | 3.5794 | 0.4917 |
|
70 |
+
| 0.4696 | 12.0 | 3000 | 3.6326 | 0.4914 |
|
71 |
+
| 0.4399 | 13.0 | 3250 | 3.7408 | 0.4920 |
|
72 |
+
| 0.4324 | 14.0 | 3500 | 3.7450 | 0.4915 |
|
73 |
+
| 0.4105 | 15.0 | 3750 | 3.8301 | 0.4922 |
|
74 |
+
| 0.4081 | 16.0 | 4000 | 3.8488 | 0.4921 |
|
75 |
+
| 0.3939 | 17.0 | 4250 | 3.8492 | 0.4913 |
|
76 |
+
| 0.3924 | 18.0 | 4500 | 3.8751 | 0.4915 |
|
77 |
+
| 0.382 | 19.0 | 4750 | 3.9337 | 0.4910 |
|
78 |
+
| 0.3832 | 20.0 | 5000 | 3.9177 | 0.4908 |
|
79 |
|
80 |
|
81 |
### Framework versions
|