lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_5e-4_lora2

This model is a fine-tuned version of Qwen/Qwen1.5-4B on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 3.7344
  • Accuracy: 0.4864

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0005
  • train_batch_size: 1
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.252 1.0 250 2.3165 0.5171
1.8363 2.0 500 2.4264 0.5127
1.3801 3.0 750 2.6120 0.5059
1.0246 4.0 1000 2.8617 0.5008
0.7286 5.0 1250 3.0953 0.4959
0.601 6.0 1500 3.2139 0.4950
0.5138 7.0 1750 3.2912 0.4933
0.4837 8.0 2000 3.4517 0.49
0.4506 9.0 2250 3.4107 0.4911
0.4578 10.0 2500 3.4786 0.4905
0.4362 11.0 2750 3.5410 0.4899
0.4429 12.0 3000 3.5656 0.4909
0.4366 13.0 3250 3.5425 0.4890
0.4474 14.0 3500 3.5998 0.4900
0.4283 15.0 3750 3.6044 0.4870
0.4299 16.0 4000 3.6720 0.4882
0.4202 17.0 4250 3.6220 0.4860
0.4318 18.0 4500 3.6682 0.4875
0.4151 19.0 4750 3.7105 0.4857
0.4227 20.0 5000 3.7344 0.4864

Framework versions

  • PEFT 0.5.0
  • Transformers 4.40.2
  • Pytorch 2.3.0
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for tyzhu/lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_5e-4_lora2

Base model

Qwen/Qwen1.5-4B
Adapter
(272)
this model

Dataset used to train tyzhu/lmind_hotpot_train8000_eval7405_v1_qa_Qwen_Qwen1.5-4B_5e-4_lora2

Evaluation results

  • Accuracy on tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
    self-reported
    0.486