tyzhu's picture
End of training
0c2c7b4 verified
|
raw
history blame
3.17 kB
metadata
license: llama2
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
datasets:
  - tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
metrics:
  - accuracy
model-index:
  - name: lmind_hotpot_train8000_eval7405_v1_qa_5e-5_lora2
    results:
      - task:
          name: Causal Language Modeling
          type: text-generation
        dataset:
          name: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
          type: tyzhu/lmind_hotpot_train8000_eval7405_v1_qa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.5839240506329114

lmind_hotpot_train8000_eval7405_v1_qa_5e-5_lora2

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the tyzhu/lmind_hotpot_train8000_eval7405_v1_qa dataset. It achieves the following results on the evaluation set:

  • Loss: 3.2298
  • Accuracy: 0.5839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • lr_scheduler_warmup_ratio: 0.05
  • num_epochs: 20.0

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.798 1.0 250 1.8213 0.6067
1.7 2.0 500 1.8046 0.6077
1.5869 3.0 750 1.8293 0.6071
1.4349 4.0 1000 1.8974 0.6043
1.3111 5.0 1250 1.9769 0.6015
1.197 6.0 1500 2.0635 0.5992
1.0729 7.0 1750 2.1523 0.5975
0.9833 8.0 2000 2.2640 0.5947
0.8672 9.0 2250 2.3643 0.5924
0.7883 10.0 2500 2.4598 0.5908
0.6879 11.0 2750 2.5669 0.5890
0.6295 12.0 3000 2.7000 0.5885
0.5545 13.0 3250 2.8281 0.5851
0.5208 14.0 3500 2.8794 0.5853
0.4679 15.0 3750 2.9184 0.5863
0.4464 16.0 4000 3.0791 0.5852
0.4136 17.0 4250 3.0832 0.5856
0.4021 18.0 4500 3.0944 0.5847
0.3776 19.0 4750 3.2120 0.5828
0.373 20.0 5000 3.2298 0.5839

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.1.0+cu121
  • Datasets 2.18.0
  • Tokenizers 0.14.1