|
--- |
|
library_name: peft |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
language: |
|
- en |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: "How many helicopters can a human eat in one sitting?" |
|
tags: |
|
- Δ |
|
- LoRA |
|
--- |
|
|
|
<!-- |
|
# Model Card for Model ID |
|
--> |
|
|
|
## Model Details |
|
|
|
$$ |
|
🗽_{ΔLoRA} = \Delta_{(🦙_W, 🗽_W)} |
|
$$ |
|
|
|
$$ |
|
🦙_W + 🗽_{ΔLoRA} = 🗽_W \\ |
|
🦙_W - 🗽_{ΔLoRA} = 🦙_W |
|
$$ |
|
|
|
|
|
|
|
<!--![image/png](https://cdn-uploads.huggingface.co/production/uploads/648b0f4fd8fe693f51de98d2/aerBANxBtCya732NdBiw0.png)--> |
|
<!-- $$ |
|
W_{Llama3} + ΔLoRA_{Hermes} = W_{Hermes} \\ |
|
W_{Hermes} - ΔLoRA_{Hermes} = W_{Llama3} |
|
$$ |
|
--> |
|
<!-- |
|
$$ W_{mistral} + LoRA_{zephyr} = W_{zephyr} $$ |
|
``` |
|
typeof/zephyr-7b-beta-lora + mistralai/Mistral-7B-v0.1 |
|
= HuggingFaceH4/zephyr-7b-beta |
|
```` |
|
|
|
### Model Description |
|
|
|
- **Developed by:** [More Information Needed] |
|
- **Funded by [optional]:** [More Information Needed] |
|
- **Shared by [optional]:** [More Information Needed] |
|
- **Model type:** [More Information Needed] |
|
- **Language(s) (NLP):** [More Information Needed] |
|
- **License:** [More Information Needed] |
|
- **Finetuned from model [optional]:** [More Information Needed] |
|
|
|
|
|
### Model Sources [optional] |
|
|
|
- **Repository:** [More Information Needed] |
|
- **Paper [optional]:** [More Information Needed] |
|
- **Demo [optional]:** [More Information Needed] |
|
|
|
## Uses |
|
|
|
### Direct Use |
|
|
|
[More Information Needed] |
|
|
|
### Downstream Use [optional] |
|
|
|
[More Information Needed] |
|
|
|
### Out-of-Scope Use |
|
|
|
[More Information Needed] |
|
|
|
## Bias, Risks, and Limitations |
|
|
|
[More Information Needed] |
|
|
|
### Recommendations |
|
|
|
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. |
|
--> |
|
### Model Sources |
|
|
|
[NousResearch/Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) |
|
|
|
|
|
## How to Get Started with the Model |
|
|
|
<!-- [NousResearch/Hermes-2-Pro-Llama-3-8B](https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B) --> |
|
<!-- ### Find the original here https://huggingface.co/NousResearch/Hermes-2-Pro-Llama-3-8B --> |
|
|
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
# pip install transformers peft |
|
|
|
import torch |
|
from transformers import pipeline, AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_id = "meta-llama/Meta-Llama-3-8B" |
|
peft_model_id = "typeof/Hermes-2-Pro-Llama-3-8B-delta-lora" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id) |
|
model = AutoModelForCausalLM.from_pretrained(model_id) |
|
model.load_adapter(peft_model_id) |
|
|
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) |
|
|
|
system_prompt = """You are a function calling AI model. You are provided with function signatures within <tools></tools> XML tags. You may call one or more functions to assist with the user query. Don't make assumptions about what values to plug into functions. |
|
Here are the available tools: <tools> {"type": "function", "function": {"name": "get_stock_fundamentals", "description": "get_stock_fundamentals(symbol: str) -> dict - Get fundamental data for a given stock symbol using yfinance API.\\n\\n Args:\\n symbol (str): The stock symbol.\\n\\n Returns:\\n dict: A dictionary containing fundamental data.\\n Keys:\\n - \'symbol\': The stock symbol.\\n - \'company_name\': The long name of the company.\\n - \'sector\': The sector to which the company belongs.\\n - \'industry\': The industry to which the company belongs.\\n - \'market_cap\': The market capitalization of the company.\\n - \'pe_ratio\': The forward price-to-earnings ratio.\\n - \'pb_ratio\': The price-to-book ratio.\\n - \'dividend_yield\': The dividend yield.\\n - \'eps\': The trailing earnings per share.\\n - \'beta\': The beta value of the stock.\\n - \'52_week_high\': The 52-week high price of the stock.\\n - \'52_week_low\': The 52-week low price of the stock.", "parameters": {"type": "object", "properties": {"symbol": {"type": "string"}}, "required": ["symbol"]}}} </tools> Use the following pydantic model json schema for each tool call you will make: {"properties": {"arguments": {"title": "Arguments", "type": "object"}, "name": {"title": "Name", "type": "string"}}, "required": ["arguments", "name"], "title": "FunctionCall", "type": "object"} For each function call return a json object with function name and arguments within <tool_call></tool_call> XML tags as follows: |
|
<tool_call> |
|
{"arguments": <args-dict>, "name": <function-name>} |
|
</tool_call>""" |
|
|
|
messages = [ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": "Fetch the stock fundamentals data for Tesla (TSLA)"}, |
|
] |
|
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |
|
``` |
|
<|im_start|>assistant |
|
<tool_call> |
|
{"arguments": {"symbol": "TSLA"}, "name": "get_stock_fundamentals"} |
|
</tool_call><|im_end|> |
|
``` |
|
... call tool and pass back prompt like so... |
|
``` |
|
<|im_start|>tool |
|
<tool_response> |
|
{"name": "get_stock_fundamentals", "content": {'symbol': 'TSLA', 'company_name': 'Tesla, Inc.', 'sector': 'Consumer Cyclical', 'industry': 'Auto Manufacturers', 'market_cap': 611384164352, 'pe_ratio': 49.604652, 'pb_ratio': 9.762013, 'dividend_yield': None, 'eps': 4.3, 'beta': 2.427, '52_week_high': 299.29, '52_week_low': 152.37}} |
|
</tool_response> |
|
<|im_end|> |
|
``` |
|
``` |
|
<|im_start|>assistant |
|
The stock fundamentals data for Tesla (TSLA) are as follows: |
|
- **Symbol**: TSLA |
|
- **Company Name**: Tesla, Inc. |
|
- **Sector**: Consumer Cyclical |
|
- **Industry**: Auto Manufacturers |
|
- **Market Capitalization**: $566,160,130,480 |
|
- **Forward Price-to-Earnings Ratio (PE Ratio)**: 42.73 |
|
- **Price-to-Book Ratio (PB Ratio)**: 9.04 |
|
- **Dividend Yield**: N/A |
|
- **Trailing Earnings Per Share (EPS)**: $4.3 |
|
- **Beta Value of the Stock**: 2.42 |
|
- **52-Week High Price of the Stock**: $299.29 |
|
- **52-Week Low Price of the Stock**: $152.37 |
|
This information provides a snapshot of Tesla's financial position and performance based on the fundamental data obtained from the yfinance API. It shows that Tesla has a substantial market capitalization and a relatively high P/E and P/B ratio compared to other stocks in its industry. The company does not pay a dividend at the moment, which is reflected by a 'Dividend Yield' of 'None'. The Beta value indicates that Tesla's stock has a moderate level of volatility relative to the market. The 52-week high and low prices give an idea of the stock's range over the past year. This data can be useful when assessing investment opportunities and making investment decisions.<|im_end|> |
|
``` |
|
|
|
<!-- |
|
|
|
## Training Details |
|
|
|
### Training Data |
|
|
|
|
|
[More Information Needed] |
|
|
|
### Training Procedure |
|
|
|
|
|
#### Preprocessing [optional] |
|
|
|
[More Information Needed] |
|
|
|
|
|
#### Training Hyperparameters |
|
|
|
#### Speeds, Sizes, Times [optional] |
|
|
|
|
|
[More Information Needed] |
|
|
|
## Evaluation |
|
|
|
|
|
### Testing Data, Factors & Metrics |
|
|
|
#### Testing Data |
|
|
|
|
|
[More Information Needed] |
|
|
|
#### Factors |
|
|
|
|
|
[More Information Needed] |
|
|
|
#### Metrics |
|
|
|
|
|
[More Information Needed] |
|
|
|
### Results |
|
|
|
[More Information Needed] |
|
|
|
#### Summary |
|
|
|
## Model Examination [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Technical Specifications [optional] |
|
|
|
### Model Architecture and Objective |
|
|
|
[More Information Needed] |
|
|
|
### Compute Infrastructure |
|
|
|
[More Information Needed] |
|
|
|
#### Hardware |
|
|
|
[More Information Needed] |
|
|
|
#### Software |
|
|
|
[More Information Needed] |
|
|
|
## Citation [optional] |
|
|
|
**BibTeX:** |
|
|
|
[More Information Needed] |
|
|
|
**APA:** |
|
|
|
[More Information Needed] |
|
|
|
## Glossary [optional] |
|
|
|
[More Information Needed] |
|
|
|
## More Information |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Authors [optional] |
|
|
|
[More Information Needed] |
|
|
|
## Model Card Contact |
|
|
|
[More Information Needed] |
|
|
|
## Training procedure |
|
|
|
The following `bitsandbytes` quantization config was used during training: |
|
- quant_method: bitsandbytes |
|
- load_in_4bit: True |
|
- bnb_4bit_quant_type: nf4 |
|
- bnb_4bit_use_double_quant: True |
|
|
|
### Framework versions |
|
|
|
- PEFT 0.6.3.dev0 |
|
|
|
--> |
|
#### Summary |
|
|
|
[LoRA](https://arxiv.org/abs/2305.14314) |
|
[QLoRA](https://arxiv.org/abs/2106.09685) |