Base Model: https://huggingface.co/bigscience/bloomz-7b1


Model fine-tuned on a real news dataset and optimized for neural news generation.

Note: Hungarian was not in pretraining.

from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline

# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloomz')
model = AutoModelForSequenceClassification.from_pretrained('tum-nlp/neural-news-generator-bloomz-7b1-hu')

# Create the pipeline for neural news generation and set the repetition penalty >1.1 to punish repetition.
generator = pipeline('text-generation',
                      model=model,
                      tokenizer=tokenizer,
                      repetition_penalty=1.2)

# Define the prompt
prompt = "Cím: Ellenzéki politikai akció az ügyészséggel szemben Cikk: Az ügyészség visszautasítja az igazságszolgáltatást ért politikai nyomásgyakorlást – tájékoztatott [EOP]"

# Generate
generator(prompt, max_length=1000, num_return_sequences=1)

Trained on 6k datapoints (including all splits) from the Hungarian news dataset: https://github.com/batubayk/news_datasets

Downloads last month
9
Safetensors
Model size
7.07B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including tum-nlp/neural-news-generator-bloomz-7b1-hu