tuandunghcmut's picture
Upload folder using huggingface_hub
345ee20 verified
import os
import time
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from easydict import EasyDict as edict
import numpy as np
import random
import copy
import core
import core.models.decoders as decoders
import core.models.backbones as backbones
import core.models.necks as necks
import core.data.datasets as datasets
import core.optimizers as optimizers
from core.models.model_entry import model_entry
from core.utils import (AverageMeter, accuracy, load_state, load_last_iter,
save_state, create_logger, IterLRScheduler,
count_parameters_num, freeze_bn,
change_tensor_cuda, sync_print)
from core.distributed_utils import DistModule, DistributedGivenIterationSampler, simple_group_split, vreduce, vgather
from core.make_param_group import param_group_multitask
from core.lr_scheduler import lr_scheduler_entry
class Solver(object):
def __init__(self, C):
config = edict(C.config['common'])
ginfo = C.ginfo
if 'out_dir' in C.config:
self.out_dir = C.config['out_dir']+'/'
else:
self.out_dir = ""
if 'expname' in C.config:
self.tb_path = '{}events/{}'.format(self.out_dir, C.config['expname'])
self.ckpt_path = '{}checkpoints/{}'.format(self.out_dir, C.config['expname'])
self.logs_path = '{}logs/{}'.format(self.out_dir, C.config['expname'])
else:
save_path = config.get('save_path', os.path.dirname(C.config_file))
self.save_path = save_path
self.tb_path = '{}/events'.format(save_path)
self.ckpt_path = '{}/checkpoints'.format(save_path)
self.logs_path = '{}/logs'.format(save_path)
if C.rank == 0:
if config.get('history', False):
os.makedirs(self.tb_path+'_'+str(C.rank), exist_ok=True)
else:
os.makedirs(self.tb_path, exist_ok=True)
os.makedirs(self.ckpt_path, exist_ok=True)
os.makedirs(self.logs_path, exist_ok=True)
if config.get('history', False):
self.tb_logger = SummaryWriter(self.tb_path+'_'+str(C.rank))
else:
self.tb_logger = SummaryWriter(self.tb_path)
else:
if config.get('history', False):
os.makedirs(self.tb_path+'_'+str(C.rank), exist_ok=True)
self.tb_logger = SummaryWriter(self.tb_path+'_'+str(C.rank))
while not os.path.exists(self.logs_path):
time.sleep(1)
if ginfo.task_rank == 0:
self.logger = create_logger('global_logger', '{}/log_task_{}.txt'.format(self.logs_path, ginfo.task_id))
self.clip_grad_backbone = config.get('clip_grad_backbone', 0.0)
self.clip_grad_neck = config.get('clip_grad_neck', 0.0)
self.clip_grad_decoder = config.get('clip_grad_decoder', 0.0)
self.sync = config.get('sync', False)
self.fix_bn = config.get('fix_bn', False)
self.last_iter = -1
# self.feature_dim = config.model['kwargs']['feature_dim']
# self.feature_dim = config['feature_dim']
self.C = C
self.config = config
self.ginfo = ginfo
# for auto_denan
self.autodenan = self.config.get('auto_denan', True)
if not self.autodenan and self.C.rank == 0:
self.logger.info('auto_denan disabled!')
self.last_state_dict = {}
self.last_optim_state_dict = {}
self.last_save_iter = -1
# for auto_alert
self.auto_alert = self.config.get('auto_alert', False)
if self.auto_alert and self.C.rank == 0:
self.job_name = C.config_path.split('/')[-2]
if self.auto_alert:
from core.msg_server import MsgClient
self.alert('job started with auto alert!')
# change tensor .cuda
change_tensor_cuda()
# lr
assert config.lr_scheduler.get('use_new_lr', 'deprecated') == 'deprecated' # redundant config alert
config.base_lr = config.lr_scheduler.kwargs.base_lr
self.tmp = edict()
## random seed setting
rng = np.random.RandomState(self.config.get('random_seed', 0))
self.randomseed_pool = rng.randint(999999, size=config.max_iter)
def init_msg_client(self):
with open('server.txt') as f:
line = f.read().strip()
ip, port = line.split()
port = int(port)
self.msg_client = MsgClient(ip, port)
def alert(self, msg):
if self.C.rank == 0:
try:
self.msg_client.send('[{}]: {}\n'.format(self.job_name, msg))
except Exception as e:
print(e)
count = 0
succ = False
while count < 10:
print('reconnecting...')
try:
if hasattr(self, 'msg_client'):
self.msg_client.close()
self.init_msg_client()
except Exception as e2:
print(e2)
count += 1
time.sleep(1)
else:
succ = True
break
if succ:
self.msg_client.send('[{}]: {}'.format(self.job_name, msg))
def create_dataset(self):
ginfo = self.ginfo
config = self.config
dataset_args = config.dataset['kwargs']
dataset_args['ginfo'] = ginfo
self.dataset = datasets.dataset_entry(config.dataset)
dist.barrier()
def create_dataloader(self):
config = self.config
ginfo = self.ginfo
self.sampler = DistributedGivenIterationSampler(
self.dataset, config.max_iter, config.sampler.batch_size,
world_size=ginfo.task_size, rank=ginfo.task_rank,
last_iter=self.last_iter, shuffle_strategy=config.sampler.shuffle_strategy,
random_seed=ginfo.task_random_seed, ret_save_path=config.sampler.get('ret_save_path', None))
self.loader = DataLoader(self.dataset, batch_size=config.sampler.batch_size,
shuffle=False, num_workers=config.workers,
pin_memory=False, sampler=self.sampler)
def create_model(self):
config = self.config
ginfo = self.ginfo
backbone_bn_group_size = config.backbone['kwargs'].get('bn_group_size', 1)
assert backbone_bn_group_size == 1, 'other bn group size not support!'
backbone_bn_group_comm = self.ginfo.backbone_share_group
# if backbone_bn_group_size == 1:
# backbone_bn_group_comm = None
# else:
# assert self.C.world_size % backbone_bn_group_size == 0
# backbone_bn_group_comm = simple_group_split(self.C.world_size, self.C.rank, self.C.world_size // backbone_bn_group_size)
## build backbone
config.backbone['kwargs']['bn_group'] = backbone_bn_group_comm
backbone_module = backbones.backbone_entry(config.backbone)
count_parameters_num(backbone_module)
## build necks
neck_bn_group_size = config.backbone['kwargs'].get('bn_group_size', 1)
assert neck_bn_group_size == 1, 'other bn group size not support!'
neck_bn_group_comm = self.ginfo.neck_share_group
# neck_bn_group_size = config.neck['kwargs'].get('bn_group_size', 1)
# if neck_bn_group_size == 1:
# neck_bn_group_comm = None
# else:
# assert self.C.world_size % neck_bn_group_size == 0
# neck_bn_group_comm = simple_group_split(self.C.world_size, self.C.rank, self.C.world_size // neck_bn_group_size)
neck_args = config.neck['kwargs']
neck_args['backbone'] = backbone_module
neck_args['bn_group'] = neck_bn_group_comm
neck_module = necks.neck_entry(config.neck)
## add decoder
decoder_bn_group_size = config.backbone['kwargs'].get('bn_group_size', 1)
assert decoder_bn_group_size == 1, 'other bn group size not support!'
decoder_bn_group_comm = self.ginfo.decoder_share_group
# decoder_bn_group_size = config.neck['kwargs'].get('bn_group_size', 1)
# if decoder_bn_group_size == 1:
# decoder_bn_group_comm = None
# else:
# assert self.C.world_size % decoder_bn_group_size == 0
# decoder_bn_group_comm = simple_group_split(self.C.world_size, self.C.rank, self.C.world_size // decoder_bn_group_size)
decoder_args = config.decoder['kwargs']
decoder_args['backbone'] = backbone_module
decoder_args['neck'] = neck_module
decoder_args['bn_group'] = decoder_bn_group_comm
decoder_module = decoders.decoder_entry(config.decoder)
# build
model = model_entry(backbone_module, neck_module, decoder_module)
if self.C.rank == 0:
print(model)
model = DistModule(model, sync=self.sync, task_grp=self.ginfo.group, \
share_backbone_group=self.ginfo.backbone_share_group, \
share_neck_group=self.ginfo.neck_share_group, \
share_decoder_group=self.ginfo.decoder_share_group)
self.model = model
def create_optimizer(self):
## param_group
decoder_optimizer_args = self.config.decoder.kwargs.get('optimizer', self.config.optimizer)
neck_optimizer_args = self.config.neck.kwargs.get('optimizer', self.config.optimizer)
param_group = param_group_multitask(self.model)
param_group[1].update(neck_optimizer_args)
param_group[2].update(decoder_optimizer_args)
if self.C.rank == 0:
self.logger.info('making param_group_backbone, num_parameters:{}, args: {}'.format(len(param_group[0]['params']), self.config.optimizer))
self.logger.info('making param_group_neck, num_parameters:{}, args: {}'.format(len(param_group[1]['params']), neck_optimizer_args))
self.logger.info('making param_group_decoder, num_parameters:{}, args: {}'.format(len(param_group[2]['params']), decoder_optimizer_args))
if len(param_group) > 3:
self.logger.info('making param_group_other, num_parameters:{}, args: {}'.format(len(param_group[3]['params']), self.config.optimizer))
else:
self.logger.info('making param_group_other, num_parameters:{}, args: {}'.format(0, 'No Args!'))
self.config.optimizer.kwargs.params = param_group
self.config.optimizer.kwargs.lr = self.config.base_lr
self.optimizer = optimizers.optim_entry(self.config.optimizer)
def create_lr_scheduler(self):
if self.C.rank == 0:
self.logger.info('using new lr scheduler!')
self.config.lr_scheduler.kwargs.optimizer = self.optimizer
self.config.lr_scheduler.kwargs.last_iter = self.last_iter
self.config.lr_scheduler.kwargs.max_iter = self.config.max_iter
self.lr_scheduler = lr_scheduler_entry(self.config.lr_scheduler)
def load(self, args):
if args.load_path == '':
return
if args.recover:
self.last_iter = load_state(args.load_path.replace('ckpt_task_', 'ckpt_task{}_'.format(self.ginfo.task_id)), self.model, optimizer=self.optimizer, recover=args.recover)
self.last_iter -= 1
else:
if args.load_single:
load_state(args.load_path, self.model, ignore=args.ignore)
else:
load_state(args.load_path.replace('ckpt_task_', 'ckpt_task{}_'.format(self.ginfo.task_id)), self.model, ignore=args.ignore)
def initialize(self, args):
## create dataset to get num_classes
self.create_dataset()
self.create_model()
# self.create_optimizer()
## load first to get last_iter
# currently a workaround to get last_iter before sampler and scheduler
# if args.recover:
# self.last_iter = load_last_iter(args.load_path.replace('ckpt_task', 'ckpt_task{}'.format(self.ginfo.task_id)))
# self.last_iter -= 1
self.create_optimizer()
self.load_args = args
self.load(args)
self.create_optimizer()
## then create sampler in dataloader
self.create_dataloader()
self.create_lr_scheduler()
def pre_run(self):
tmp = self.tmp
tmp.vbatch_time = AverageMeter(10)
tmp.vdata_time = AverageMeter(10)
tmp.vloss = AverageMeter(10)
tmp.vtop1 = AverageMeter(10)
tmp.loss_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.top1_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vbackbone_grad_norm = AverageMeter(10)
tmp.backbone_grad_norm_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vneck_grad_norm = AverageMeter(10)
tmp.neck_grad_norm_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vdecoder_grad_norm = AverageMeter(10)
tmp.decoder_grad_norm_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
self.model.train()
# if self.fix_bn:
# names = freeze_bn(self.model)
# if self.C.rank == 0:
# for name in names:
# self.logger.info('fixing BN [{}]'.format(name))
def prepare_data(self):
ginfo = self.ginfo
tmp = self.tmp
tmp.input_var = dict()
if ginfo.task_type == 'pairwise':
tmp.input_var['image'] = torch.autograd.Variable(torch.cat((tmp.input['image1'], tmp.input['image2']), 0).cuda())
tmp.input_var['label'] = torch.autograd.Variable(torch.cat((tmp.input['label'], tmp.input['label']), 0).cuda())
else:
for k,v in tmp.input.items():
if not isinstance(v, list):
tmp.input_var[k] = torch.autograd.Variable(v.cuda())
def _set_randomseed(self, seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def forward(self):
## set random seed with current_step at each iteration
self._set_randomseed(self.randomseed_pool[self.tmp.current_step])
tmp = self.tmp
ginfo = self.ginfo
tmp.drop_this_iter = False
output = self.model(tmp.input_var, tmp.current_step)
tmp.raw_loss = output['loss'] / ginfo.task_size
if 'top1' in output:
tmp.raw_top1 = output['top1'] / ginfo.task_size
else:
tmp.raw_top1 = torch.zeros(1).cuda()
tmp.loss = tmp.raw_loss * ginfo.task_weight
tmp.top1 = tmp.raw_top1
def backward(self):
tmp = self.tmp
ginfo = self.ginfo
self.optimizer.zero_grad()
tmp.loss.backward()
def auto_denan(self):
torch.cuda.synchronize()
if self.auto_denan_check():
self.auto_denan_recover()
return True
# self.forward()
# self.backward()
else:
self.auto_denan_save()
return False
def auto_denan_check(self):
tmp = self.tmp
ginfo = self.ginfo
drop_flag = 0
if np.isnan(tmp.loss.data.item()) or np.isinf(tmp.loss.data.item()):
drop_flag = 1
drop_flag = torch.Tensor([drop_flag]).cuda()
dist.all_reduce(drop_flag)
drop_flag = drop_flag.item()
if drop_flag > 0:
return True
return False
def auto_denan_recover(self):
try:
if self.C.rank == 0:
self.logger.info('NaN or Inf encountered, recovering from {}\t'.format(self.last_save_iter))
# recover model
self.model.load_state_dict(self.last_state_dict, strict=True)
# recover optimizer
for g in self.optimizer.param_groups:
for p in g['params']:
self.optimizer.state[p]['momentum_buffer'].copy_(self.last_optim_state_dict['state'][id(p)]['momentum_buffer'])
except:
raise RuntimeError('If NaN or Inf at iter 0, try lower lr. Otherwise please contact zhouyucong for a bug fix')
def auto_denan_save(self):
if self.last_save_iter < 100 or self.tmp.current_step - self.last_save_iter > 100:
self.last_state_dict = {}
self.last_optim_state_dict = {}
# model state
for k,v in self.model.state_dict().items():
self.last_state_dict[k] = v.cpu()
# optimizer state
self.last_optim_state_dict['state'] = {k:{'momentum_buffer':v['momentum_buffer'].cpu()} for k,v in self.optimizer.state_dict()['state'].items()}
#self.last_optim_state_dict['param_groups'] = copy.deepcopy(self.optimizer.state_dict()['param_groups']) # currently this is not needed
self.last_save_iter = self.tmp.current_step
def gather_result(self):
tmp = self.tmp
ginfo = self.ginfo
vreduce(tmp.vloss, tmp.raw_loss.data, group=ginfo.group)
vreduce(tmp.vtop1, tmp.top1, group=ginfo.group)
vgather(tmp.loss_list, tmp.vloss.avg)
vgather(tmp.top1_list, tmp.vtop1.avg)
if self.auto_clip:
vreduce(tmp.vbackbone_grad_norm, torch.Tensor([tmp.backbone_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.backbone_grad_norm_list, tmp.vbackbone_grad_norm.avg)
vreduce(tmp.vneck_grad_norm, torch.Tensor([tmp.neck_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.neck_grad_norm_list, tmp.vneck_grad_norm.avg)
vreduce(tmp.vdecoder_grad_norm, torch.Tensor([tmp.decoder_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.decoder_grad_norm_list, tmp.vdecoder_grad_norm.avg)
vreduce(tmp.vbackbone_grad_thresh, torch.Tensor([tmp.backbone_grad_thresh/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.backbone_grad_thresh_list, tmp.vbackbone_grad_thresh.avg)
vreduce(tmp.vneck_grad_thresh, torch.Tensor([tmp.neck_grad_thresh/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.neck_grad_thresh_list, tmp.vneck_grad_thresh.avg)
vreduce(tmp.vdecoder_grad_thresh, torch.Tensor([tmp.decoder_grad_thresh/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.decoder_grad_thresh_list, tmp.vdecoder_grad_thresh.avg)
elif self.manual_clip:
if self.clip_grad_backbone > 0:
vreduce(tmp.vbackbone_grad_norm, torch.Tensor([tmp.backbone_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.backbone_grad_norm_list, tmp.vbackbone_grad_norm.avg)
if self.clip_grad_neck > 0:
vreduce(tmp.vneck_grad_norm, torch.Tensor([tmp.neck_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.neck_grad_norm_list, tmp.vneck_grad_norm.avg)
if self.clip_grad_decoder > 0:
vreduce(tmp.vdecoder_grad_norm, torch.Tensor([tmp.decoder_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.decoder_grad_norm_list, tmp.vdecoder_grad_norm.avg)
def play_with_grads(self):
if self.clip_grad > 0:
torch.nn.utils.clip_grad.clip_grad_norm_(self.model.parameters(), max_norm=self.clip_grad)
def update(self):
ginfo = self.ginfo
tmp = self.tmp
# reduce
self.model.reduce_gradients()
if self.clip_grad_backbone > 0:
tmp.backbone_grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(\
self.model.module.backbone_module.parameters(), \
max_norm=self.clip_grad_backbone*(ginfo.task_size**0.5))
is_inf = np.isinf(tmp.backbone_grad_norm)
is_nan = np.isnan(tmp.backbone_grad_norm)
if ginfo.task_rank == 0 and (is_inf or is_nan):
self.logger.info('task{} {} backbone_grad_norm inf/nan {}/{}'.format(\
ginfo.task_id, ginfo.task_name, is_inf, is_nan))
if self.clip_grad_neck > 0:
tmp.neck_grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(\
self.model.module.neck_module.parameters(), \
max_norm=self.clip_grad_neck*(self.C.world_size**0.5))
is_inf = np.isinf(tmp.neck_grad_norm)
is_nan = np.isnan(tmp.neck_grad_norm)
if ginfo.task_rank == 0 and (is_inf or is_nan):
self.logger.info('task{} {} backbone_grad_norm inf/nan {}/{}'.format(\
ginfo.task_id, ginfo.task_name, is_inf, is_nan))
if self.clip_grad_decoder > 0:
tmp.decoder_grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(\
self.model.module.decoder_module.parameters(), \
max_norm=self.clip_grad_decoder*(self.C.world_size**0.5))
is_inf = np.isinf(tmp.decoder_grad_norm)
is_nan = np.isnan(tmp.decoder_grad_norm)
if ginfo.task_rank == 0 and (is_inf or is_nan):
self.logger.info('task{} {} backbone_grad_norm inf/nan {}/{}'.format(\
ginfo.task_id, ginfo.task_name, is_inf, is_nan))
self.optimizer.step()
def tb_logging(self):
tmp = self.tmp
ginfo = self.ginfo
for tid,ii in enumerate(ginfo.task_root_ranks):
self.tb_logger.add_scalar('loss_{}'.format(ginfo.task_names[tid]), tmp.loss_list[ii], tmp.current_step)
self.tb_logger.add_scalar('top1_{}'.format(ginfo.task_names[tid]), tmp.top1_list[ii], tmp.current_step)
if self.clip_grad_backbone > 0:
self.tb_logger.add_scalar('backbone_grad_norm_{}'.format(ginfo.task_names[tid]), tmp.backbone_grad_norm_list[ii], tmp.current_step)
if self.clip_grad_neck > 0:
self.tb_logger.add_scalar('neck_grad_norm_{}'.format(ginfo.task_names[tid]), tmp.neck_grad_norm_list[ii], tmp.current_step)
if self.clip_grad_decoder > 0:
self.tb_logger.add_scalar('decoder_grad_norm_{}'.format(ginfo.task_names[tid]), tmp.decoder_grad_norm_list[ii], tmp.current_step)
self.tb_logger.add_scalar('lr', tmp.current_lr, tmp.current_step)
def logging(self):
tmp = self.tmp
config = self.config
ginfo = self.ginfo
vlosses = tmp.vlosses
log_msg = '\t'.join([
'Iter: [{0}/{1}] ',
'task{task_id:<2}: {task_name}\t'
'Time: {batch_time.avg:.3f} (ETA:{eta:.2f}h) ({data_time.avg:.3f}) ',
'Loss: {loss.avg:.4f} '
'Prec@1: {top1.avg:.3f} '
'LR: {current_lr} '
'{meters} ',
'max mem: {memory:.0f}'
])
MB = 1024.0 * 1024.0
loss_str = []
for name, meter in vlosses.items():
loss_str.append(
"{}: {} ".format(name, str(meter.item()))
)
loss_str = '\t'.join(loss_str)
log_msg = log_msg.format(tmp.current_step, config.max_iter, \
task_id=ginfo.task_id, task_name=ginfo.task_name, \
batch_time=tmp.vbatch_time, \
eta=(config.max_iter-tmp.current_step)*tmp.vbatch_time.avg/3600, \
data_time=tmp.vdata_time, \
loss=tmp.vloss, \
top1=tmp.vtop1, \
current_lr=tmp.current_lr, \
meters=loss_str, \
memory=torch.cuda.max_memory_allocated() / MB)
self.logger.info(log_msg)
def save(self):
config = self.config
tmp = self.tmp
ginfo = self.ginfo
if config.save_interval > 0 and (tmp.current_step+1) % 1000 == 0 and ginfo.task_rank == 0:
save_state({
'step': tmp.current_step+1,
'backbone_args': config.get('backbone', None),
'neck_args': config.get('neck', None),
'decoder_args': config.get('decoder', None),
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, '{}/ckpt_task{}'.format(self.ckpt_path, ginfo.task_id), 'newest')
if config.save_interval > 0 and (tmp.current_step+1) % config.save_interval == 0 and ginfo.task_rank == 0:
save_state({
'step': tmp.current_step+1,
'backbone_args': config.get('backbone', None),
'neck_args': config.get('neck', None),
'decoder_args': config.get('decoder', None),
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, '{}/ckpt_task{}'.format(self.ckpt_path, ginfo.task_id), tmp.current_step+1)
if config.save_interval > 0 and tmp.current_step+1 == len(self.loader) and ginfo.task_rank == 0:
save_state({
'step': tmp.current_step+1,
'backbone_args': config.get('backbone', None),
'neck_args': config.get('neck', None),
'decoder_args': config.get('decoder', None),
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, '{}/ckpt_task{}'.format(self.ckpt_path, ginfo.task_id), 'final')
def post_run(self):
pass
def run(self):
config = self.config
ginfo = self.ginfo
tmp = self.tmp
self.pre_run()
end = time.time()
load_flag = True
for i, tmp.input in enumerate(self.loader):
tmp.vdata_time.update(time.time() - end)
self.prepare_data()
# TODO currently a work around for gpu memory leak when recovering
if load_flag:
tmp.current_step = 0
self.forward()
self.model.module.decoder_module.ignore_this_iter = True
self.backward()
self.model.module.decoder_module.ignore_this_iter = False
torch.cuda.synchronize()
#self.update()
self.load(self.load_args)
load_flag = False
tmp.current_step = self.last_iter + i + 1
self.lr_scheduler.step(tmp.current_step)
tmp.current_lr = self.lr_scheduler.get_lr()[0]
self.forward()
self.backward()
if self.autodenan:
self.auto_denan()
#self.play_with_grads()
self.update()
self.gather_result()
tmp.vbatch_time.update(time.time() - end)
end = time.time()
if tmp.current_step % config.print_freq == 0 and ginfo.task_rank == 0:
if ginfo.task_id == 0:
self.tb_logging()
self.logging()
self.save()
self.post_run()