File size: 27,307 Bytes
345ee20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
import os
import time
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from tensorboardX import SummaryWriter
from easydict import EasyDict as edict
import numpy as np
import random
import copy
import core
import core.models.decoders as decoders
import core.models.backbones as backbones
import core.models.necks as necks
import core.data.datasets as datasets
import core.optimizers as optimizers
from core.models.model_entry import model_entry
from core.utils import (AverageMeter, accuracy, load_state, load_last_iter,
save_state, create_logger, IterLRScheduler,
count_parameters_num, freeze_bn,
change_tensor_cuda, sync_print)
from core.distributed_utils import DistModule, DistributedGivenIterationSampler, simple_group_split, vreduce, vgather
from core.make_param_group import param_group_multitask
from core.lr_scheduler import lr_scheduler_entry
class Solver(object):
def __init__(self, C):
config = edict(C.config['common'])
ginfo = C.ginfo
if 'out_dir' in C.config:
self.out_dir = C.config['out_dir']+'/'
else:
self.out_dir = ""
if 'expname' in C.config:
self.tb_path = '{}events/{}'.format(self.out_dir, C.config['expname'])
self.ckpt_path = '{}checkpoints/{}'.format(self.out_dir, C.config['expname'])
self.logs_path = '{}logs/{}'.format(self.out_dir, C.config['expname'])
else:
save_path = config.get('save_path', os.path.dirname(C.config_file))
self.save_path = save_path
self.tb_path = '{}/events'.format(save_path)
self.ckpt_path = '{}/checkpoints'.format(save_path)
self.logs_path = '{}/logs'.format(save_path)
if C.rank == 0:
if config.get('history', False):
os.makedirs(self.tb_path+'_'+str(C.rank), exist_ok=True)
else:
os.makedirs(self.tb_path, exist_ok=True)
os.makedirs(self.ckpt_path, exist_ok=True)
os.makedirs(self.logs_path, exist_ok=True)
if config.get('history', False):
self.tb_logger = SummaryWriter(self.tb_path+'_'+str(C.rank))
else:
self.tb_logger = SummaryWriter(self.tb_path)
else:
if config.get('history', False):
os.makedirs(self.tb_path+'_'+str(C.rank), exist_ok=True)
self.tb_logger = SummaryWriter(self.tb_path+'_'+str(C.rank))
while not os.path.exists(self.logs_path):
time.sleep(1)
if ginfo.task_rank == 0:
self.logger = create_logger('global_logger', '{}/log_task_{}.txt'.format(self.logs_path, ginfo.task_id))
self.clip_grad_backbone = config.get('clip_grad_backbone', 0.0)
self.clip_grad_neck = config.get('clip_grad_neck', 0.0)
self.clip_grad_decoder = config.get('clip_grad_decoder', 0.0)
self.sync = config.get('sync', False)
self.fix_bn = config.get('fix_bn', False)
self.last_iter = -1
# self.feature_dim = config.model['kwargs']['feature_dim']
# self.feature_dim = config['feature_dim']
self.C = C
self.config = config
self.ginfo = ginfo
# for auto_denan
self.autodenan = self.config.get('auto_denan', True)
if not self.autodenan and self.C.rank == 0:
self.logger.info('auto_denan disabled!')
self.last_state_dict = {}
self.last_optim_state_dict = {}
self.last_save_iter = -1
# for auto_alert
self.auto_alert = self.config.get('auto_alert', False)
if self.auto_alert and self.C.rank == 0:
self.job_name = C.config_path.split('/')[-2]
if self.auto_alert:
from core.msg_server import MsgClient
self.alert('job started with auto alert!')
# change tensor .cuda
change_tensor_cuda()
# lr
assert config.lr_scheduler.get('use_new_lr', 'deprecated') == 'deprecated' # redundant config alert
config.base_lr = config.lr_scheduler.kwargs.base_lr
self.tmp = edict()
## random seed setting
rng = np.random.RandomState(self.config.get('random_seed', 0))
self.randomseed_pool = rng.randint(999999, size=config.max_iter)
def init_msg_client(self):
with open('server.txt') as f:
line = f.read().strip()
ip, port = line.split()
port = int(port)
self.msg_client = MsgClient(ip, port)
def alert(self, msg):
if self.C.rank == 0:
try:
self.msg_client.send('[{}]: {}\n'.format(self.job_name, msg))
except Exception as e:
print(e)
count = 0
succ = False
while count < 10:
print('reconnecting...')
try:
if hasattr(self, 'msg_client'):
self.msg_client.close()
self.init_msg_client()
except Exception as e2:
print(e2)
count += 1
time.sleep(1)
else:
succ = True
break
if succ:
self.msg_client.send('[{}]: {}'.format(self.job_name, msg))
def create_dataset(self):
ginfo = self.ginfo
config = self.config
dataset_args = config.dataset['kwargs']
dataset_args['ginfo'] = ginfo
self.dataset = datasets.dataset_entry(config.dataset)
dist.barrier()
def create_dataloader(self):
config = self.config
ginfo = self.ginfo
self.sampler = DistributedGivenIterationSampler(
self.dataset, config.max_iter, config.sampler.batch_size,
world_size=ginfo.task_size, rank=ginfo.task_rank,
last_iter=self.last_iter, shuffle_strategy=config.sampler.shuffle_strategy,
random_seed=ginfo.task_random_seed, ret_save_path=config.sampler.get('ret_save_path', None))
self.loader = DataLoader(self.dataset, batch_size=config.sampler.batch_size,
shuffle=False, num_workers=config.workers,
pin_memory=False, sampler=self.sampler)
def create_model(self):
config = self.config
ginfo = self.ginfo
backbone_bn_group_size = config.backbone['kwargs'].get('bn_group_size', 1)
assert backbone_bn_group_size == 1, 'other bn group size not support!'
backbone_bn_group_comm = self.ginfo.backbone_share_group
# if backbone_bn_group_size == 1:
# backbone_bn_group_comm = None
# else:
# assert self.C.world_size % backbone_bn_group_size == 0
# backbone_bn_group_comm = simple_group_split(self.C.world_size, self.C.rank, self.C.world_size // backbone_bn_group_size)
## build backbone
config.backbone['kwargs']['bn_group'] = backbone_bn_group_comm
backbone_module = backbones.backbone_entry(config.backbone)
count_parameters_num(backbone_module)
## build necks
neck_bn_group_size = config.backbone['kwargs'].get('bn_group_size', 1)
assert neck_bn_group_size == 1, 'other bn group size not support!'
neck_bn_group_comm = self.ginfo.neck_share_group
# neck_bn_group_size = config.neck['kwargs'].get('bn_group_size', 1)
# if neck_bn_group_size == 1:
# neck_bn_group_comm = None
# else:
# assert self.C.world_size % neck_bn_group_size == 0
# neck_bn_group_comm = simple_group_split(self.C.world_size, self.C.rank, self.C.world_size // neck_bn_group_size)
neck_args = config.neck['kwargs']
neck_args['backbone'] = backbone_module
neck_args['bn_group'] = neck_bn_group_comm
neck_module = necks.neck_entry(config.neck)
## add decoder
decoder_bn_group_size = config.backbone['kwargs'].get('bn_group_size', 1)
assert decoder_bn_group_size == 1, 'other bn group size not support!'
decoder_bn_group_comm = self.ginfo.decoder_share_group
# decoder_bn_group_size = config.neck['kwargs'].get('bn_group_size', 1)
# if decoder_bn_group_size == 1:
# decoder_bn_group_comm = None
# else:
# assert self.C.world_size % decoder_bn_group_size == 0
# decoder_bn_group_comm = simple_group_split(self.C.world_size, self.C.rank, self.C.world_size // decoder_bn_group_size)
decoder_args = config.decoder['kwargs']
decoder_args['backbone'] = backbone_module
decoder_args['neck'] = neck_module
decoder_args['bn_group'] = decoder_bn_group_comm
decoder_module = decoders.decoder_entry(config.decoder)
# build
model = model_entry(backbone_module, neck_module, decoder_module)
if self.C.rank == 0:
print(model)
model = DistModule(model, sync=self.sync, task_grp=self.ginfo.group, \
share_backbone_group=self.ginfo.backbone_share_group, \
share_neck_group=self.ginfo.neck_share_group, \
share_decoder_group=self.ginfo.decoder_share_group)
self.model = model
def create_optimizer(self):
## param_group
decoder_optimizer_args = self.config.decoder.kwargs.get('optimizer', self.config.optimizer)
neck_optimizer_args = self.config.neck.kwargs.get('optimizer', self.config.optimizer)
param_group = param_group_multitask(self.model)
param_group[1].update(neck_optimizer_args)
param_group[2].update(decoder_optimizer_args)
if self.C.rank == 0:
self.logger.info('making param_group_backbone, num_parameters:{}, args: {}'.format(len(param_group[0]['params']), self.config.optimizer))
self.logger.info('making param_group_neck, num_parameters:{}, args: {}'.format(len(param_group[1]['params']), neck_optimizer_args))
self.logger.info('making param_group_decoder, num_parameters:{}, args: {}'.format(len(param_group[2]['params']), decoder_optimizer_args))
if len(param_group) > 3:
self.logger.info('making param_group_other, num_parameters:{}, args: {}'.format(len(param_group[3]['params']), self.config.optimizer))
else:
self.logger.info('making param_group_other, num_parameters:{}, args: {}'.format(0, 'No Args!'))
self.config.optimizer.kwargs.params = param_group
self.config.optimizer.kwargs.lr = self.config.base_lr
self.optimizer = optimizers.optim_entry(self.config.optimizer)
def create_lr_scheduler(self):
if self.C.rank == 0:
self.logger.info('using new lr scheduler!')
self.config.lr_scheduler.kwargs.optimizer = self.optimizer
self.config.lr_scheduler.kwargs.last_iter = self.last_iter
self.config.lr_scheduler.kwargs.max_iter = self.config.max_iter
self.lr_scheduler = lr_scheduler_entry(self.config.lr_scheduler)
def load(self, args):
if args.load_path == '':
return
if args.recover:
self.last_iter = load_state(args.load_path.replace('ckpt_task_', 'ckpt_task{}_'.format(self.ginfo.task_id)), self.model, optimizer=self.optimizer, recover=args.recover)
self.last_iter -= 1
else:
if args.load_single:
load_state(args.load_path, self.model, ignore=args.ignore)
else:
load_state(args.load_path.replace('ckpt_task_', 'ckpt_task{}_'.format(self.ginfo.task_id)), self.model, ignore=args.ignore)
def initialize(self, args):
## create dataset to get num_classes
self.create_dataset()
self.create_model()
# self.create_optimizer()
## load first to get last_iter
# currently a workaround to get last_iter before sampler and scheduler
# if args.recover:
# self.last_iter = load_last_iter(args.load_path.replace('ckpt_task', 'ckpt_task{}'.format(self.ginfo.task_id)))
# self.last_iter -= 1
self.create_optimizer()
self.load_args = args
self.load(args)
self.create_optimizer()
## then create sampler in dataloader
self.create_dataloader()
self.create_lr_scheduler()
def pre_run(self):
tmp = self.tmp
tmp.vbatch_time = AverageMeter(10)
tmp.vdata_time = AverageMeter(10)
tmp.vloss = AverageMeter(10)
tmp.vtop1 = AverageMeter(10)
tmp.loss_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.top1_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vbackbone_grad_norm = AverageMeter(10)
tmp.backbone_grad_norm_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vneck_grad_norm = AverageMeter(10)
tmp.neck_grad_norm_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
tmp.vdecoder_grad_norm = AverageMeter(10)
tmp.decoder_grad_norm_list = [torch.Tensor(1).cuda() for _ in range(self.C.world_size)]
self.model.train()
# if self.fix_bn:
# names = freeze_bn(self.model)
# if self.C.rank == 0:
# for name in names:
# self.logger.info('fixing BN [{}]'.format(name))
def prepare_data(self):
ginfo = self.ginfo
tmp = self.tmp
tmp.input_var = dict()
if ginfo.task_type == 'pairwise':
tmp.input_var['image'] = torch.autograd.Variable(torch.cat((tmp.input['image1'], tmp.input['image2']), 0).cuda())
tmp.input_var['label'] = torch.autograd.Variable(torch.cat((tmp.input['label'], tmp.input['label']), 0).cuda())
else:
for k,v in tmp.input.items():
if not isinstance(v, list):
tmp.input_var[k] = torch.autograd.Variable(v.cuda())
def _set_randomseed(self, seed):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
def forward(self):
## set random seed with current_step at each iteration
self._set_randomseed(self.randomseed_pool[self.tmp.current_step])
tmp = self.tmp
ginfo = self.ginfo
tmp.drop_this_iter = False
output = self.model(tmp.input_var, tmp.current_step)
tmp.raw_loss = output['loss'] / ginfo.task_size
if 'top1' in output:
tmp.raw_top1 = output['top1'] / ginfo.task_size
else:
tmp.raw_top1 = torch.zeros(1).cuda()
tmp.loss = tmp.raw_loss * ginfo.task_weight
tmp.top1 = tmp.raw_top1
def backward(self):
tmp = self.tmp
ginfo = self.ginfo
self.optimizer.zero_grad()
tmp.loss.backward()
def auto_denan(self):
torch.cuda.synchronize()
if self.auto_denan_check():
self.auto_denan_recover()
return True
# self.forward()
# self.backward()
else:
self.auto_denan_save()
return False
def auto_denan_check(self):
tmp = self.tmp
ginfo = self.ginfo
drop_flag = 0
if np.isnan(tmp.loss.data.item()) or np.isinf(tmp.loss.data.item()):
drop_flag = 1
drop_flag = torch.Tensor([drop_flag]).cuda()
dist.all_reduce(drop_flag)
drop_flag = drop_flag.item()
if drop_flag > 0:
return True
return False
def auto_denan_recover(self):
try:
if self.C.rank == 0:
self.logger.info('NaN or Inf encountered, recovering from {}\t'.format(self.last_save_iter))
# recover model
self.model.load_state_dict(self.last_state_dict, strict=True)
# recover optimizer
for g in self.optimizer.param_groups:
for p in g['params']:
self.optimizer.state[p]['momentum_buffer'].copy_(self.last_optim_state_dict['state'][id(p)]['momentum_buffer'])
except:
raise RuntimeError('If NaN or Inf at iter 0, try lower lr. Otherwise please contact zhouyucong for a bug fix')
def auto_denan_save(self):
if self.last_save_iter < 100 or self.tmp.current_step - self.last_save_iter > 100:
self.last_state_dict = {}
self.last_optim_state_dict = {}
# model state
for k,v in self.model.state_dict().items():
self.last_state_dict[k] = v.cpu()
# optimizer state
self.last_optim_state_dict['state'] = {k:{'momentum_buffer':v['momentum_buffer'].cpu()} for k,v in self.optimizer.state_dict()['state'].items()}
#self.last_optim_state_dict['param_groups'] = copy.deepcopy(self.optimizer.state_dict()['param_groups']) # currently this is not needed
self.last_save_iter = self.tmp.current_step
def gather_result(self):
tmp = self.tmp
ginfo = self.ginfo
vreduce(tmp.vloss, tmp.raw_loss.data, group=ginfo.group)
vreduce(tmp.vtop1, tmp.top1, group=ginfo.group)
vgather(tmp.loss_list, tmp.vloss.avg)
vgather(tmp.top1_list, tmp.vtop1.avg)
if self.auto_clip:
vreduce(tmp.vbackbone_grad_norm, torch.Tensor([tmp.backbone_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.backbone_grad_norm_list, tmp.vbackbone_grad_norm.avg)
vreduce(tmp.vneck_grad_norm, torch.Tensor([tmp.neck_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.neck_grad_norm_list, tmp.vneck_grad_norm.avg)
vreduce(tmp.vdecoder_grad_norm, torch.Tensor([tmp.decoder_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.decoder_grad_norm_list, tmp.vdecoder_grad_norm.avg)
vreduce(tmp.vbackbone_grad_thresh, torch.Tensor([tmp.backbone_grad_thresh/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.backbone_grad_thresh_list, tmp.vbackbone_grad_thresh.avg)
vreduce(tmp.vneck_grad_thresh, torch.Tensor([tmp.neck_grad_thresh/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.neck_grad_thresh_list, tmp.vneck_grad_thresh.avg)
vreduce(tmp.vdecoder_grad_thresh, torch.Tensor([tmp.decoder_grad_thresh/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.decoder_grad_thresh_list, tmp.vdecoder_grad_thresh.avg)
elif self.manual_clip:
if self.clip_grad_backbone > 0:
vreduce(tmp.vbackbone_grad_norm, torch.Tensor([tmp.backbone_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.backbone_grad_norm_list, tmp.vbackbone_grad_norm.avg)
if self.clip_grad_neck > 0:
vreduce(tmp.vneck_grad_norm, torch.Tensor([tmp.neck_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.neck_grad_norm_list, tmp.vneck_grad_norm.avg)
if self.clip_grad_decoder > 0:
vreduce(tmp.vdecoder_grad_norm, torch.Tensor([tmp.decoder_grad_norm/ginfo.task_size]).cuda(), group=ginfo.group)
vgather(tmp.decoder_grad_norm_list, tmp.vdecoder_grad_norm.avg)
def play_with_grads(self):
if self.clip_grad > 0:
torch.nn.utils.clip_grad.clip_grad_norm_(self.model.parameters(), max_norm=self.clip_grad)
def update(self):
ginfo = self.ginfo
tmp = self.tmp
# reduce
self.model.reduce_gradients()
if self.clip_grad_backbone > 0:
tmp.backbone_grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(\
self.model.module.backbone_module.parameters(), \
max_norm=self.clip_grad_backbone*(ginfo.task_size**0.5))
is_inf = np.isinf(tmp.backbone_grad_norm)
is_nan = np.isnan(tmp.backbone_grad_norm)
if ginfo.task_rank == 0 and (is_inf or is_nan):
self.logger.info('task{} {} backbone_grad_norm inf/nan {}/{}'.format(\
ginfo.task_id, ginfo.task_name, is_inf, is_nan))
if self.clip_grad_neck > 0:
tmp.neck_grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(\
self.model.module.neck_module.parameters(), \
max_norm=self.clip_grad_neck*(self.C.world_size**0.5))
is_inf = np.isinf(tmp.neck_grad_norm)
is_nan = np.isnan(tmp.neck_grad_norm)
if ginfo.task_rank == 0 and (is_inf or is_nan):
self.logger.info('task{} {} backbone_grad_norm inf/nan {}/{}'.format(\
ginfo.task_id, ginfo.task_name, is_inf, is_nan))
if self.clip_grad_decoder > 0:
tmp.decoder_grad_norm = torch.nn.utils.clip_grad.clip_grad_norm_(\
self.model.module.decoder_module.parameters(), \
max_norm=self.clip_grad_decoder*(self.C.world_size**0.5))
is_inf = np.isinf(tmp.decoder_grad_norm)
is_nan = np.isnan(tmp.decoder_grad_norm)
if ginfo.task_rank == 0 and (is_inf or is_nan):
self.logger.info('task{} {} backbone_grad_norm inf/nan {}/{}'.format(\
ginfo.task_id, ginfo.task_name, is_inf, is_nan))
self.optimizer.step()
def tb_logging(self):
tmp = self.tmp
ginfo = self.ginfo
for tid,ii in enumerate(ginfo.task_root_ranks):
self.tb_logger.add_scalar('loss_{}'.format(ginfo.task_names[tid]), tmp.loss_list[ii], tmp.current_step)
self.tb_logger.add_scalar('top1_{}'.format(ginfo.task_names[tid]), tmp.top1_list[ii], tmp.current_step)
if self.clip_grad_backbone > 0:
self.tb_logger.add_scalar('backbone_grad_norm_{}'.format(ginfo.task_names[tid]), tmp.backbone_grad_norm_list[ii], tmp.current_step)
if self.clip_grad_neck > 0:
self.tb_logger.add_scalar('neck_grad_norm_{}'.format(ginfo.task_names[tid]), tmp.neck_grad_norm_list[ii], tmp.current_step)
if self.clip_grad_decoder > 0:
self.tb_logger.add_scalar('decoder_grad_norm_{}'.format(ginfo.task_names[tid]), tmp.decoder_grad_norm_list[ii], tmp.current_step)
self.tb_logger.add_scalar('lr', tmp.current_lr, tmp.current_step)
def logging(self):
tmp = self.tmp
config = self.config
ginfo = self.ginfo
vlosses = tmp.vlosses
log_msg = '\t'.join([
'Iter: [{0}/{1}] ',
'task{task_id:<2}: {task_name}\t'
'Time: {batch_time.avg:.3f} (ETA:{eta:.2f}h) ({data_time.avg:.3f}) ',
'Loss: {loss.avg:.4f} '
'Prec@1: {top1.avg:.3f} '
'LR: {current_lr} '
'{meters} ',
'max mem: {memory:.0f}'
])
MB = 1024.0 * 1024.0
loss_str = []
for name, meter in vlosses.items():
loss_str.append(
"{}: {} ".format(name, str(meter.item()))
)
loss_str = '\t'.join(loss_str)
log_msg = log_msg.format(tmp.current_step, config.max_iter, \
task_id=ginfo.task_id, task_name=ginfo.task_name, \
batch_time=tmp.vbatch_time, \
eta=(config.max_iter-tmp.current_step)*tmp.vbatch_time.avg/3600, \
data_time=tmp.vdata_time, \
loss=tmp.vloss, \
top1=tmp.vtop1, \
current_lr=tmp.current_lr, \
meters=loss_str, \
memory=torch.cuda.max_memory_allocated() / MB)
self.logger.info(log_msg)
def save(self):
config = self.config
tmp = self.tmp
ginfo = self.ginfo
if config.save_interval > 0 and (tmp.current_step+1) % 1000 == 0 and ginfo.task_rank == 0:
save_state({
'step': tmp.current_step+1,
'backbone_args': config.get('backbone', None),
'neck_args': config.get('neck', None),
'decoder_args': config.get('decoder', None),
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, '{}/ckpt_task{}'.format(self.ckpt_path, ginfo.task_id), 'newest')
if config.save_interval > 0 and (tmp.current_step+1) % config.save_interval == 0 and ginfo.task_rank == 0:
save_state({
'step': tmp.current_step+1,
'backbone_args': config.get('backbone', None),
'neck_args': config.get('neck', None),
'decoder_args': config.get('decoder', None),
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, '{}/ckpt_task{}'.format(self.ckpt_path, ginfo.task_id), tmp.current_step+1)
if config.save_interval > 0 and tmp.current_step+1 == len(self.loader) and ginfo.task_rank == 0:
save_state({
'step': tmp.current_step+1,
'backbone_args': config.get('backbone', None),
'neck_args': config.get('neck', None),
'decoder_args': config.get('decoder', None),
'state_dict': self.model.state_dict(),
'optimizer': self.optimizer.state_dict(),
}, '{}/ckpt_task{}'.format(self.ckpt_path, ginfo.task_id), 'final')
def post_run(self):
pass
def run(self):
config = self.config
ginfo = self.ginfo
tmp = self.tmp
self.pre_run()
end = time.time()
load_flag = True
for i, tmp.input in enumerate(self.loader):
tmp.vdata_time.update(time.time() - end)
self.prepare_data()
# TODO currently a work around for gpu memory leak when recovering
if load_flag:
tmp.current_step = 0
self.forward()
self.model.module.decoder_module.ignore_this_iter = True
self.backward()
self.model.module.decoder_module.ignore_this_iter = False
torch.cuda.synchronize()
#self.update()
self.load(self.load_args)
load_flag = False
tmp.current_step = self.last_iter + i + 1
self.lr_scheduler.step(tmp.current_step)
tmp.current_lr = self.lr_scheduler.get_lr()[0]
self.forward()
self.backward()
if self.autodenan:
self.auto_denan()
#self.play_with_grads()
self.update()
self.gather_result()
tmp.vbatch_time.update(time.time() - end)
end = time.time()
if tmp.current_step % config.print_freq == 0 and ginfo.task_rank == 0:
if ginfo.task_id == 0:
self.tb_logging()
self.logging()
self.save()
self.post_run()
|