ForkedHulk2 / core /config.py
tuandunghcmut's picture
Upload folder using huggingface_hub
345ee20 verified
import yaml
import logging
import numpy as np
from easydict import EasyDict as edict
import copy
import re
import torch.distributed as dist
from .utils import printlog
from torch.distributed.distributed_c10d import _get_global_rank
task_specific_param = ['backbone', 'neck', 'decoder', 'dataset', 'sampler', 'lr_scheduler', 'optimizer',
'extra', 'evaluation', 'model_entry_type', 'load_ignore', 'ckpt_task_id',
'patch_neck','patch_adapter', 'patch_proj', 'label_neck', 'label_adapter', 'label_proj',]
loader = yaml.SafeLoader
loader.add_implicit_resolver(
u'tag:yaml.org,2002:float',
re.compile(u'''^(?:
[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|\\.[0-9_]+(?:[eE][-+][0-9]+)?
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
|[-+]?\\.(?:inf|Inf|INF)
|\\.(?:nan|NaN|NAN))$''', re.X),
list(u'-+0123456789.'))
def flat(nums):
res = []
for i in nums:
if isinstance(i, list):
res.extend(flat(i))
else:
res.append(i)
return res
def specific_group_split_modality_groups(group_spec, share_backbone_group_ids,
share_decoder_group_ids, share_rgb_group_ids,
share_video_group_ids, share_dense_labeling_group_ids,
share_sparse_labeling_group_ids, share_text_group_ids, share_modality_group_ids=None):
## sanity check
assert type(group_spec) is list
assert all(map(lambda x: type(x) is int, group_spec))
num_groups = len(group_spec)
splits = np.sum(group_spec)
if dist.is_initialized():
world_size = dist.get_world_size()
rank = dist.get_rank()
else:
world_size = 1
rank = 0
assert world_size % splits == 0, f"{world_size} % {splits}"
unit = int(world_size / splits)
## split
group_sizes = [x*unit for x in group_spec] # [8,8,8] / [32, 16]
groups = []
roots = []
last = 0
task_info = edict()
all_ranks = []
for i,gs in enumerate(group_sizes):
ranks = list(map(int, np.arange(last, last+gs))) #[0...8], [9...15], ...
groups.append(dist.new_group(ranks=ranks))
roots.append(last) # 0, 8, 16
all_ranks.append(ranks)
if rank in ranks: # if current gpu rank in traversed rank task group
printlog(f">> task_info.group[{i}] ranks {ranks}")
task_info.group = groups[-1] # subordinate to what group
task_info.task_size = gs # 8
task_info.task_id = i
task_info.task_rank = rank - last
task_info.task_root_rank = last
last += gs
task_info.root_group = dist.new_group(ranks=roots)
printlog(f">> task_info.root_group ranks {roots}")
task_info.task_sizes = group_sizes
task_info.task_root_ranks = roots
task_info.task_num = num_groups
## share_backbone_group spec
if share_backbone_group_ids is not None: # *[0,0,0]*(default) | [0,1,0]task ids
# group size must equal within a share_group
backboneshareid2idx = {}
for idx, this_id in enumerate(share_backbone_group_ids):
if this_id not in backboneshareid2idx:
backboneshareid2idx[this_id] = list()
backboneshareid2idx[this_id].append(idx) # {0: [0,1,2]}| {0: [0,2], 1: [1]}
## create backbone share group
for idxs in backboneshareid2idx.values(): # idxs = [0, 1, 2]
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.backbone_share_group = this_share_group
printlog(f">> task_info.backbone_share_group[{idxs}] ranks {this_group_ranks}")
task_info.backbone_group_size = len(backboneshareid2idx)
task_info.backbone_task_size = len(backboneshareid2idx) * this_group_size
task_info.backbone_task_rank = np.sum(rank < np.array(this_group_ranks))
## share_decoder_group spec
if share_decoder_group_ids is not None:
# group size must equal within a share_group
decodershareid2idx = {}
for idx, this_id in enumerate(share_decoder_group_ids):
if this_id not in decodershareid2idx:
decodershareid2idx[this_id] = list()
decodershareid2idx[this_id].append(idx)
## create decoder share group
for idxs in decodershareid2idx.values():
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.decoder_share_group = this_share_group
printlog(f">> task_info.decoder_share_group[{idxs}] ranks {this_group_ranks}")
task_info.decoder_group_size = len(decodershareid2idx)
task_info.decoder_task_size = len(decodershareid2idx) * this_group_size
task_info.decoder_task_rank = np.sum(rank < np.array(this_group_ranks))
# Now, only for sparse labeling to deal with the modality sharing problem,
# which is not a good solution, but it works.
# parameters that have grads in [0,1,2] are in modality share group,
# parameters that do not have grads in [3,4] should be set in the task-specific group.
if share_modality_group_ids is not None:
# group size must equal within a share_group
modalityshareid2idx = {}
for idx, this_id in enumerate(share_modality_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in modalityshareid2idx:
modalityshareid2idx[this_id] = list()
modalityshareid2idx[this_id].append(idx)
## create modality share group
for idxs in modalityshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.modality_share_group = this_share_group
printlog(f">> task_info.modality_share_group[{idxs}] ranks {this_group_ranks}")
task_info.modality_group_size = len(modalityshareid2idx)
if share_rgb_group_ids is not None:
# group size must equal within a share_group
rgbshareid2idx = {}
for idx, this_id in enumerate(share_rgb_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in rgbshareid2idx:
rgbshareid2idx[this_id] = list()
rgbshareid2idx[this_id].append(idx)
## create rgb share group
for idxs in rgbshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.rgb_share_group = this_share_group
printlog(f">> task_info.rgb_share_group[{idxs}] ranks {this_group_ranks}")
task_info.rgb_group_size = len(rgbshareid2idx)
# task_info.rgb_task_size = len(rgbshareid2idx) * this_group_size
# task_info.rgb_task_rank = np.sum(rank < np.array(this_group_ranks))
# all_group_ranks = flat(rgbshareid2idx.values())
# if not len(rgbshareid2idx.values()) or dist.get_rank() not in all_group_ranks:
# task_info.rgb_share_group = None
if share_dense_labeling_group_ids is not None:
# group size must equal within a share_group
dense_labelingshareid2idx = {}
for idx, this_id in enumerate(share_dense_labeling_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in dense_labelingshareid2idx:
dense_labelingshareid2idx[this_id] = list()
dense_labelingshareid2idx[this_id].append(idx)
## create dense share group
for idxs in dense_labelingshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.dense_labeling_share_group = this_share_group
printlog(f">> task_info.dense_labeling_share_group[{idxs}] ranks {this_group_ranks}")
task_info.dense_labeling_group_size = len(dense_labelingshareid2idx)
if share_sparse_labeling_group_ids is not None:
# group size must equal within a share_group
sparse_labelingshareid2idx = {}
for idx, this_id in enumerate(share_sparse_labeling_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in sparse_labelingshareid2idx:
sparse_labelingshareid2idx[this_id] = list()
sparse_labelingshareid2idx[this_id].append(idx)
## create sparse share group
for idxs in sparse_labelingshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.sparse_labeling_share_group = this_share_group
printlog(f">> task_info.sparse_labeling_share_group[{idxs}] ranks {this_group_ranks}")
task_info.sparse_labeling_group_size = len(sparse_labelingshareid2idx)
if share_text_group_ids is not None:
# group size must equal within a share_group
textshareid2idx = {}
for idx, this_id in enumerate(share_text_group_ids):
# -1 denotes that this modality does not appear in the current task
if this_id not in textshareid2idx:
textshareid2idx[this_id] = list()
textshareid2idx[this_id].append(idx)
## create text share group
for idxs in textshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.text_share_group = this_share_group
printlog(f">> task_info.text_share_group[{idxs}] ranks {this_group_ranks}")
task_info.text_group_size = len(textshareid2idx)
if share_video_group_ids is not None:
# group size must equal within a share_group
videoshareid2idx = {}
for idx, this_id in enumerate(share_video_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in videoshareid2idx:
videoshareid2idx[this_id] = list()
videoshareid2idx[this_id].append(idx)
## create video share group
for idxs in videoshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.video_share_group = this_share_group
printlog(f">> task_info.video_share_group[{idxs}] ranks {this_group_ranks}")
task_info.video_group_size = len(videoshareid2idx)
return task_info
def specific_group_split(group_spec, share_backbone_group_ids, \
share_neck_group_ids, share_decoder_group_ids, share_adapter_group_ids):
## sanity check
assert type(group_spec) is list
assert all(map(lambda x: type(x) is int, group_spec))
num_groups = len(group_spec)
splits = np.sum(group_spec)
world_size = dist.get_world_size()
rank = dist.get_rank()
assert world_size % splits == 0, f"{world_size} % {splits}"
unit = int(world_size / splits)
## split
group_sizes = [x*unit for x in group_spec] # [8,8,8] / [32, 16]
groups = []
roots = []
last = 0
task_info = edict()
all_ranks = []
# import pdb;
# pdb.set_trace()
for i,gs in enumerate(group_sizes):
ranks = list(map(int, np.arange(last, last+gs))) #[0...8], [9...15], ...
groups.append(dist.new_group(ranks=ranks))
roots.append(last) # 0, 8, 16
all_ranks.append(ranks)
if rank in ranks: # if current gpu rank in traversed rank task group
printlog(f">> task_info.group[{i}] ranks {ranks}")
task_info.group = groups[-1] # subordinate to what group
task_info.task_size = gs # 8
task_info.task_id = i
task_info.task_rank = rank - last
task_info.task_root_rank = last
last += gs
task_info.root_group = dist.new_group(ranks=roots)
printlog(f">> task_info.root_group ranks {roots}")
task_info.task_sizes = group_sizes
task_info.task_root_ranks = roots
task_info.task_num = num_groups
# pdb.set_trace()
## share_backbone_group spec
if share_backbone_group_ids is not None: # *[0,0,0]*(default) | [0,1,0]task ids
# group size must equal within a share_group
backboneshareid2idx = {}
for idx, this_id in enumerate(share_backbone_group_ids):
if this_id not in backboneshareid2idx:
backboneshareid2idx[this_id] = list()
backboneshareid2idx[this_id].append(idx) # {0: [0,1,2]}| {0: [0,2], 1: [1]}
## create backbone share group
for idxs in backboneshareid2idx.values(): # idxs = [0, 1, 2]
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.backbone_share_group = this_share_group
printlog(f">> task_info.backbone_share_group[{idxs}] ranks {this_group_ranks}")
task_info.backbone_group_size = len(backboneshareid2idx)
task_info.backbone_task_size = len(backboneshareid2idx) * this_group_size
task_info.backbone_task_rank = np.sum(rank < np.array(this_group_ranks))
## share_adapter_group spec
if share_adapter_group_ids is not None: # *[0,0,0]*(default) | [0,1,0]task ids
# group size must equal within a share_group
adaptershareid2idx = {}
for idx, this_id in enumerate(share_adapter_group_ids):
if this_id not in adaptershareid2idx:
adaptershareid2idx[this_id] = list()
adaptershareid2idx[this_id].append(idx) # {0: [0,1,2]}| {0: [0,2], 1: [1]}
## create adapter share group
for idxs in adaptershareid2idx.values(): # idxs = [0, 1, 2]
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.adapter_share_group = this_share_group
printlog(f">> task_info.adapter_share_group[{idxs}] ranks {this_group_ranks}")
task_info.adapter_group_size = len(adaptershareid2idx)
task_info.adapter_task_size = len(adaptershareid2idx) * this_group_size
task_info.adapter_task_rank = np.sum(rank < np.array(this_group_ranks))
# pdb.set_trace()
## share_neck_group spec
if share_neck_group_ids is not None:
# group size must equal within a share_group
neckshareid2idx = {}
for idx, this_id in enumerate(share_neck_group_ids):
if this_id not in neckshareid2idx:
neckshareid2idx[this_id] = list()
neckshareid2idx[this_id].append(idx)
## create neck share group
for idxs in neckshareid2idx.values():
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.neck_share_group = this_share_group
printlog(f">> task_info.neck_share_group[{idxs}] ranks {this_group_ranks}")
task_info.neck_group_size = len(neckshareid2idx)
task_info.neck_task_size = len(neckshareid2idx) * this_group_size
task_info.neck_task_rank = np.sum(rank < np.array(this_group_ranks))
## share_decoder_group spec
if share_decoder_group_ids is not None:
# group size must equal within a share_group
decodershareid2idx = {}
for idx, this_id in enumerate(share_decoder_group_ids):
if this_id not in decodershareid2idx:
decodershareid2idx[this_id] = list()
decodershareid2idx[this_id].append(idx)
## create decoder share group
for idxs in decodershareid2idx.values():
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.decoder_share_group = this_share_group
printlog(f">> task_info.decoder_share_group[{idxs}] ranks {this_group_ranks}")
task_info.decoder_group_size = len(decodershareid2idx)
task_info.decoder_task_size = len(decodershareid2idx) * this_group_size
task_info.decoder_task_rank = np.sum(rank < np.array(this_group_ranks))
return task_info
class Config(object):
def __init__(self, config_file, noginfo=False, spec_ginfo_index=None):
with open(config_file) as f:
config = yaml.load(f, Loader=loader)
# print('config',config)
self.config_path = config_file
world_size = dist.get_world_size()
rank = dist.get_rank()
if noginfo:
ginfo = None
else: # cherrypick from tasks
tasks = config['tasks']
num_tasks = len(tasks)
if spec_ginfo_index is not None:
assert spec_ginfo_index < len(tasks), \
'spec_ginfo_index={} is larger than num_tasks={}'.format(spec_ginfo_index, len(tasks))
tmp_config = copy.deepcopy(config)
config['tasks'] = dict()
config['tasks'][0] = tmp_config['tasks'][spec_ginfo_index]
config['tasks'][0]['gres_ratio'] = 1
tasks = config['tasks']
num_tasks = len(tasks)
# parse task_common and assign to each task
task_common = config.get('task_common', None)
if task_common is not None:
for i in range(num_tasks):
for k,v in task_common.items():
if not k in tasks[i]:
printlog('setting {} to {} for task {}'.format(k, v, i))
tasks[i][k] = v
group_spec = [tasks[i].get('gres_ratio',1) for i in range(num_tasks)]
## share group spec
if config['common'].get('share_backbone_group', False):
share_backbone_group_ids = config['common']['share_backbone_group'][:num_tasks]
else:
share_backbone_group_ids = [0 for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_adapter_group', False):
if len(config['common']['share_adapter_group']) == 1:
adapter_list = []
share_adapter_group_ids = config['common']['share_adapter_group'][:num_tasks]
else:
share_adapter_group_ids = [0 for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_neck_group', False):
share_neck_group_ids = config['common']['share_neck_group'][:num_tasks]
else:
share_neck_group_ids = [0 for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_decoder_group', False):
share_decoder_group_ids = config['common']['share_decoder_group'][:num_tasks]
else:
share_decoder_group_ids = [i for i in range(num_tasks)] # hardcoded prior
ginfo = specific_group_split(group_spec, share_backbone_group_ids, share_neck_group_ids,
share_decoder_group_ids, share_adapter_group_ids)
loss_weight_sum = float(np.sum(np.array([task['loss_weight'] for task in tasks.values()])))
ginfo.task_name = tasks[ginfo.task_id]['name']
ginfo.task_names = [tasks[i]['name'] for i in range(ginfo.task_num)]
ginfo.task_weight = float(tasks[ginfo.task_id]['loss_weight']) / loss_weight_sum
ginfo.task_type = tasks[ginfo.task_id].get('type', 'normal')
ginfo.task_types = [tasks[i].get('type', 'normal') for i in range(ginfo.task_num)]
ginfo.task_random_seed = tasks[ginfo.task_id].get('random_seed', 0)
for p in task_specific_param:
if p in config['tasks'][ginfo.task_id]:
config['common'][p] = config['tasks'][ginfo.task_id][p]
printlog('{} of task{} has been overided to {}'.format(p, ginfo.task_id, config['common'][p]))
logger = logging.getLogger('global_logger')
self.world_size = world_size
self.rank = rank
self.ginfo = ginfo
self.config = config
self.config_file = config_file
class Config_Hulk(object):
def __init__(self, config_file, noginfo=False, spec_ginfo_index=None):
with open(config_file) as f:
config = yaml.load(f, Loader=loader)
# print('config',config)
self.config_path = config_file
if dist.is_initialized():
world_size = dist.get_world_size()
rank = dist.get_rank()
else:
world_size = 1
rank = 0
if noginfo:
ginfo = None
else: # cherrypick from tasks
tasks = config['tasks']
num_tasks = len(tasks)
if spec_ginfo_index is not None:
assert spec_ginfo_index < len(tasks), \
'spec_ginfo_index={} is larger than num_tasks={}'.format(spec_ginfo_index, len(tasks))
tmp_config = copy.deepcopy(config)
config['tasks'] = dict()
config['tasks'][0] = tmp_config['tasks'][spec_ginfo_index]
config['tasks'][0]['gres_ratio'] = 1
tasks = config['tasks']
num_tasks = len(tasks)
# parse task_common and assign to each task
task_common = config.get('task_common', None)
if task_common is not None:
for i in range(num_tasks):
for k,v in task_common.items():
if not k in tasks[i]:
printlog('setting {} to {} for task {}'.format(k, v, i))
tasks[i][k] = v
group_spec = [tasks[i].get('gres_ratio',1) for i in range(num_tasks)]
## share group spec
if config['common'].get('share_backbone_group', False):
share_backbone_group_ids = config['common']['share_backbone_group'][:num_tasks]
else:
share_backbone_group_ids = [0 for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_decoder_group', False):
share_decoder_group_ids = config['common']['share_decoder_group'][:num_tasks]
else:
share_decoder_group_ids = [i for i in range(num_tasks)] # hardcoded prior
# use modality groups to control the communication of neck, adapter, and output proj
if config['common'].get('share_rgb_group', False):
share_rgb_group_ids = config['common']['share_rgb_group'][:num_tasks]
else:
share_rgb_group_ids = [i for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_dense_labeling_group', False):
share_dense_labeling_group_ids = config['common']['share_dense_labeling_group'][:num_tasks]
else:
share_dense_labeling_group_ids = [i for i in range(num_tasks)]
if config['common'].get('share_sparse_labeling_group', False):
share_sparse_labeling_group_ids = config['common']['share_sparse_labeling_group'][:num_tasks]
else:
share_sparse_labeling_group_ids = [i for i in range(num_tasks)]
if config['common'].get('share_text_group', False):
share_text_group_ids = config['common']['share_text_group'][:num_tasks]
else:
share_text_group_ids = [i for i in range(num_tasks)]
if config['common'].get('share_video_group', False):
share_video_group_ids = config['common']['share_video_group'][:num_tasks]
else:
share_video_group_ids = [i for i in range(num_tasks)]
if config['common'].get('share_modality_group', False):
share_modality_group_ids = config['common']['share_modality_group'][:num_tasks]
else:
share_modality_group_ids = [i for i in range(num_tasks)]
# ginfo = specific_group_split_modality_groups(group_spec, share_backbone_group_ids,
# share_decoder_group_ids, share_rgb_group_ids,
# share_video_group_ids, share_dense_labeling_group_ids,
# share_sparse_labeling_group_ids, share_text_group_ids,
# share_modality_group_ids)
import easydict
ginfo = easydict.EasyDict()
ginfo.task_id = 5
ginfo.task_num = 5
ginfo.backbone_share_group = None
ginfo.task_rank = 0
loss_weight_sum = float(np.sum(np.array([task['loss_weight'] for task in tasks.values()])))
ginfo.task_name = tasks[ginfo.task_id]['name']
ginfo.task_names = [tasks[i]['name'] for i in range(ginfo.task_num)]
# ginfo.task_weight = float(tasks[ginfo.task_id]['loss_weight']) / loss_weight_sum
ginfo.task_weight = float(tasks[ginfo.task_id]['loss_weight'])
ginfo.task_type = tasks[ginfo.task_id].get('type', 'normal')
ginfo.task_types = [tasks[i].get('type', 'normal') for i in range(ginfo.task_num)]
ginfo.task_random_seed = tasks[ginfo.task_id].get('random_seed', 0)
for p in task_specific_param:
if p in config['tasks'][ginfo.task_id]:
config['common'][p] = config['tasks'][ginfo.task_id][p]
printlog('{} of task{} has been overided to {}'.format(p, ginfo.task_id, config['common'][p]))
logger = logging.getLogger('global_logger')
self.world_size = world_size
self.rank = rank
self.ginfo = ginfo
self.config = config
self.config_file = config_file
# def __repr__(self) -> str:
# return str(self.config)