File size: 28,396 Bytes
345ee20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 |
import yaml
import logging
import numpy as np
from easydict import EasyDict as edict
import copy
import re
import torch.distributed as dist
from .utils import printlog
from torch.distributed.distributed_c10d import _get_global_rank
task_specific_param = ['backbone', 'neck', 'decoder', 'dataset', 'sampler', 'lr_scheduler', 'optimizer',
'extra', 'evaluation', 'model_entry_type', 'load_ignore', 'ckpt_task_id',
'patch_neck','patch_adapter', 'patch_proj', 'label_neck', 'label_adapter', 'label_proj',]
loader = yaml.SafeLoader
loader.add_implicit_resolver(
u'tag:yaml.org,2002:float',
re.compile(u'''^(?:
[-+]?(?:[0-9][0-9_]*)\\.[0-9_]*(?:[eE][-+]?[0-9]+)?
|[-+]?(?:[0-9][0-9_]*)(?:[eE][-+]?[0-9]+)
|\\.[0-9_]+(?:[eE][-+][0-9]+)?
|[-+]?[0-9][0-9_]*(?::[0-5]?[0-9])+\\.[0-9_]*
|[-+]?\\.(?:inf|Inf|INF)
|\\.(?:nan|NaN|NAN))$''', re.X),
list(u'-+0123456789.'))
def flat(nums):
res = []
for i in nums:
if isinstance(i, list):
res.extend(flat(i))
else:
res.append(i)
return res
def specific_group_split_modality_groups(group_spec, share_backbone_group_ids,
share_decoder_group_ids, share_rgb_group_ids,
share_video_group_ids, share_dense_labeling_group_ids,
share_sparse_labeling_group_ids, share_text_group_ids, share_modality_group_ids=None):
## sanity check
assert type(group_spec) is list
assert all(map(lambda x: type(x) is int, group_spec))
num_groups = len(group_spec)
splits = np.sum(group_spec)
if dist.is_initialized():
world_size = dist.get_world_size()
rank = dist.get_rank()
else:
world_size = 1
rank = 0
assert world_size % splits == 0, f"{world_size} % {splits}"
unit = int(world_size / splits)
## split
group_sizes = [x*unit for x in group_spec] # [8,8,8] / [32, 16]
groups = []
roots = []
last = 0
task_info = edict()
all_ranks = []
for i,gs in enumerate(group_sizes):
ranks = list(map(int, np.arange(last, last+gs))) #[0...8], [9...15], ...
groups.append(dist.new_group(ranks=ranks))
roots.append(last) # 0, 8, 16
all_ranks.append(ranks)
if rank in ranks: # if current gpu rank in traversed rank task group
printlog(f">> task_info.group[{i}] ranks {ranks}")
task_info.group = groups[-1] # subordinate to what group
task_info.task_size = gs # 8
task_info.task_id = i
task_info.task_rank = rank - last
task_info.task_root_rank = last
last += gs
task_info.root_group = dist.new_group(ranks=roots)
printlog(f">> task_info.root_group ranks {roots}")
task_info.task_sizes = group_sizes
task_info.task_root_ranks = roots
task_info.task_num = num_groups
## share_backbone_group spec
if share_backbone_group_ids is not None: # *[0,0,0]*(default) | [0,1,0]task ids
# group size must equal within a share_group
backboneshareid2idx = {}
for idx, this_id in enumerate(share_backbone_group_ids):
if this_id not in backboneshareid2idx:
backboneshareid2idx[this_id] = list()
backboneshareid2idx[this_id].append(idx) # {0: [0,1,2]}| {0: [0,2], 1: [1]}
## create backbone share group
for idxs in backboneshareid2idx.values(): # idxs = [0, 1, 2]
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.backbone_share_group = this_share_group
printlog(f">> task_info.backbone_share_group[{idxs}] ranks {this_group_ranks}")
task_info.backbone_group_size = len(backboneshareid2idx)
task_info.backbone_task_size = len(backboneshareid2idx) * this_group_size
task_info.backbone_task_rank = np.sum(rank < np.array(this_group_ranks))
## share_decoder_group spec
if share_decoder_group_ids is not None:
# group size must equal within a share_group
decodershareid2idx = {}
for idx, this_id in enumerate(share_decoder_group_ids):
if this_id not in decodershareid2idx:
decodershareid2idx[this_id] = list()
decodershareid2idx[this_id].append(idx)
## create decoder share group
for idxs in decodershareid2idx.values():
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.decoder_share_group = this_share_group
printlog(f">> task_info.decoder_share_group[{idxs}] ranks {this_group_ranks}")
task_info.decoder_group_size = len(decodershareid2idx)
task_info.decoder_task_size = len(decodershareid2idx) * this_group_size
task_info.decoder_task_rank = np.sum(rank < np.array(this_group_ranks))
# Now, only for sparse labeling to deal with the modality sharing problem,
# which is not a good solution, but it works.
# parameters that have grads in [0,1,2] are in modality share group,
# parameters that do not have grads in [3,4] should be set in the task-specific group.
if share_modality_group_ids is not None:
# group size must equal within a share_group
modalityshareid2idx = {}
for idx, this_id in enumerate(share_modality_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in modalityshareid2idx:
modalityshareid2idx[this_id] = list()
modalityshareid2idx[this_id].append(idx)
## create modality share group
for idxs in modalityshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.modality_share_group = this_share_group
printlog(f">> task_info.modality_share_group[{idxs}] ranks {this_group_ranks}")
task_info.modality_group_size = len(modalityshareid2idx)
if share_rgb_group_ids is not None:
# group size must equal within a share_group
rgbshareid2idx = {}
for idx, this_id in enumerate(share_rgb_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in rgbshareid2idx:
rgbshareid2idx[this_id] = list()
rgbshareid2idx[this_id].append(idx)
## create rgb share group
for idxs in rgbshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.rgb_share_group = this_share_group
printlog(f">> task_info.rgb_share_group[{idxs}] ranks {this_group_ranks}")
task_info.rgb_group_size = len(rgbshareid2idx)
# task_info.rgb_task_size = len(rgbshareid2idx) * this_group_size
# task_info.rgb_task_rank = np.sum(rank < np.array(this_group_ranks))
# all_group_ranks = flat(rgbshareid2idx.values())
# if not len(rgbshareid2idx.values()) or dist.get_rank() not in all_group_ranks:
# task_info.rgb_share_group = None
if share_dense_labeling_group_ids is not None:
# group size must equal within a share_group
dense_labelingshareid2idx = {}
for idx, this_id in enumerate(share_dense_labeling_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in dense_labelingshareid2idx:
dense_labelingshareid2idx[this_id] = list()
dense_labelingshareid2idx[this_id].append(idx)
## create dense share group
for idxs in dense_labelingshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.dense_labeling_share_group = this_share_group
printlog(f">> task_info.dense_labeling_share_group[{idxs}] ranks {this_group_ranks}")
task_info.dense_labeling_group_size = len(dense_labelingshareid2idx)
if share_sparse_labeling_group_ids is not None:
# group size must equal within a share_group
sparse_labelingshareid2idx = {}
for idx, this_id in enumerate(share_sparse_labeling_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in sparse_labelingshareid2idx:
sparse_labelingshareid2idx[this_id] = list()
sparse_labelingshareid2idx[this_id].append(idx)
## create sparse share group
for idxs in sparse_labelingshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.sparse_labeling_share_group = this_share_group
printlog(f">> task_info.sparse_labeling_share_group[{idxs}] ranks {this_group_ranks}")
task_info.sparse_labeling_group_size = len(sparse_labelingshareid2idx)
if share_text_group_ids is not None:
# group size must equal within a share_group
textshareid2idx = {}
for idx, this_id in enumerate(share_text_group_ids):
# -1 denotes that this modality does not appear in the current task
if this_id not in textshareid2idx:
textshareid2idx[this_id] = list()
textshareid2idx[this_id].append(idx)
## create text share group
for idxs in textshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.text_share_group = this_share_group
printlog(f">> task_info.text_share_group[{idxs}] ranks {this_group_ranks}")
task_info.text_group_size = len(textshareid2idx)
if share_video_group_ids is not None:
# group size must equal within a share_group
videoshareid2idx = {}
for idx, this_id in enumerate(share_video_group_ids):
# -1 denotes that this modality does not appear in the current task
# if this_id == -1:
# continue
if this_id not in videoshareid2idx:
videoshareid2idx[this_id] = list()
videoshareid2idx[this_id].append(idx)
## create video share group
for idxs in videoshareid2idx.values(): # 0: [1,2] 1: [3]
this_group_ranks = flat([all_ranks[i] for i in idxs]) # 1 2
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks) # 2
if rank in this_group_ranks:
task_info.video_share_group = this_share_group
printlog(f">> task_info.video_share_group[{idxs}] ranks {this_group_ranks}")
task_info.video_group_size = len(videoshareid2idx)
return task_info
def specific_group_split(group_spec, share_backbone_group_ids, \
share_neck_group_ids, share_decoder_group_ids, share_adapter_group_ids):
## sanity check
assert type(group_spec) is list
assert all(map(lambda x: type(x) is int, group_spec))
num_groups = len(group_spec)
splits = np.sum(group_spec)
world_size = dist.get_world_size()
rank = dist.get_rank()
assert world_size % splits == 0, f"{world_size} % {splits}"
unit = int(world_size / splits)
## split
group_sizes = [x*unit for x in group_spec] # [8,8,8] / [32, 16]
groups = []
roots = []
last = 0
task_info = edict()
all_ranks = []
# import pdb;
# pdb.set_trace()
for i,gs in enumerate(group_sizes):
ranks = list(map(int, np.arange(last, last+gs))) #[0...8], [9...15], ...
groups.append(dist.new_group(ranks=ranks))
roots.append(last) # 0, 8, 16
all_ranks.append(ranks)
if rank in ranks: # if current gpu rank in traversed rank task group
printlog(f">> task_info.group[{i}] ranks {ranks}")
task_info.group = groups[-1] # subordinate to what group
task_info.task_size = gs # 8
task_info.task_id = i
task_info.task_rank = rank - last
task_info.task_root_rank = last
last += gs
task_info.root_group = dist.new_group(ranks=roots)
printlog(f">> task_info.root_group ranks {roots}")
task_info.task_sizes = group_sizes
task_info.task_root_ranks = roots
task_info.task_num = num_groups
# pdb.set_trace()
## share_backbone_group spec
if share_backbone_group_ids is not None: # *[0,0,0]*(default) | [0,1,0]task ids
# group size must equal within a share_group
backboneshareid2idx = {}
for idx, this_id in enumerate(share_backbone_group_ids):
if this_id not in backboneshareid2idx:
backboneshareid2idx[this_id] = list()
backboneshareid2idx[this_id].append(idx) # {0: [0,1,2]}| {0: [0,2], 1: [1]}
## create backbone share group
for idxs in backboneshareid2idx.values(): # idxs = [0, 1, 2]
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.backbone_share_group = this_share_group
printlog(f">> task_info.backbone_share_group[{idxs}] ranks {this_group_ranks}")
task_info.backbone_group_size = len(backboneshareid2idx)
task_info.backbone_task_size = len(backboneshareid2idx) * this_group_size
task_info.backbone_task_rank = np.sum(rank < np.array(this_group_ranks))
## share_adapter_group spec
if share_adapter_group_ids is not None: # *[0,0,0]*(default) | [0,1,0]task ids
# group size must equal within a share_group
adaptershareid2idx = {}
for idx, this_id in enumerate(share_adapter_group_ids):
if this_id not in adaptershareid2idx:
adaptershareid2idx[this_id] = list()
adaptershareid2idx[this_id].append(idx) # {0: [0,1,2]}| {0: [0,2], 1: [1]}
## create adapter share group
for idxs in adaptershareid2idx.values(): # idxs = [0, 1, 2]
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.adapter_share_group = this_share_group
printlog(f">> task_info.adapter_share_group[{idxs}] ranks {this_group_ranks}")
task_info.adapter_group_size = len(adaptershareid2idx)
task_info.adapter_task_size = len(adaptershareid2idx) * this_group_size
task_info.adapter_task_rank = np.sum(rank < np.array(this_group_ranks))
# pdb.set_trace()
## share_neck_group spec
if share_neck_group_ids is not None:
# group size must equal within a share_group
neckshareid2idx = {}
for idx, this_id in enumerate(share_neck_group_ids):
if this_id not in neckshareid2idx:
neckshareid2idx[this_id] = list()
neckshareid2idx[this_id].append(idx)
## create neck share group
for idxs in neckshareid2idx.values():
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.neck_share_group = this_share_group
printlog(f">> task_info.neck_share_group[{idxs}] ranks {this_group_ranks}")
task_info.neck_group_size = len(neckshareid2idx)
task_info.neck_task_size = len(neckshareid2idx) * this_group_size
task_info.neck_task_rank = np.sum(rank < np.array(this_group_ranks))
## share_decoder_group spec
if share_decoder_group_ids is not None:
# group size must equal within a share_group
decodershareid2idx = {}
for idx, this_id in enumerate(share_decoder_group_ids):
if this_id not in decodershareid2idx:
decodershareid2idx[this_id] = list()
decodershareid2idx[this_id].append(idx)
## create decoder share group
for idxs in decodershareid2idx.values():
this_group_ranks = flat([all_ranks[i] for i in idxs])
this_share_group = dist.new_group(ranks=this_group_ranks)
this_group_size = len(this_group_ranks)
if rank in this_group_ranks:
task_info.decoder_share_group = this_share_group
printlog(f">> task_info.decoder_share_group[{idxs}] ranks {this_group_ranks}")
task_info.decoder_group_size = len(decodershareid2idx)
task_info.decoder_task_size = len(decodershareid2idx) * this_group_size
task_info.decoder_task_rank = np.sum(rank < np.array(this_group_ranks))
return task_info
class Config(object):
def __init__(self, config_file, noginfo=False, spec_ginfo_index=None):
with open(config_file) as f:
config = yaml.load(f, Loader=loader)
# print('config',config)
self.config_path = config_file
world_size = dist.get_world_size()
rank = dist.get_rank()
if noginfo:
ginfo = None
else: # cherrypick from tasks
tasks = config['tasks']
num_tasks = len(tasks)
if spec_ginfo_index is not None:
assert spec_ginfo_index < len(tasks), \
'spec_ginfo_index={} is larger than num_tasks={}'.format(spec_ginfo_index, len(tasks))
tmp_config = copy.deepcopy(config)
config['tasks'] = dict()
config['tasks'][0] = tmp_config['tasks'][spec_ginfo_index]
config['tasks'][0]['gres_ratio'] = 1
tasks = config['tasks']
num_tasks = len(tasks)
# parse task_common and assign to each task
task_common = config.get('task_common', None)
if task_common is not None:
for i in range(num_tasks):
for k,v in task_common.items():
if not k in tasks[i]:
printlog('setting {} to {} for task {}'.format(k, v, i))
tasks[i][k] = v
group_spec = [tasks[i].get('gres_ratio',1) for i in range(num_tasks)]
## share group spec
if config['common'].get('share_backbone_group', False):
share_backbone_group_ids = config['common']['share_backbone_group'][:num_tasks]
else:
share_backbone_group_ids = [0 for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_adapter_group', False):
if len(config['common']['share_adapter_group']) == 1:
adapter_list = []
share_adapter_group_ids = config['common']['share_adapter_group'][:num_tasks]
else:
share_adapter_group_ids = [0 for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_neck_group', False):
share_neck_group_ids = config['common']['share_neck_group'][:num_tasks]
else:
share_neck_group_ids = [0 for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_decoder_group', False):
share_decoder_group_ids = config['common']['share_decoder_group'][:num_tasks]
else:
share_decoder_group_ids = [i for i in range(num_tasks)] # hardcoded prior
ginfo = specific_group_split(group_spec, share_backbone_group_ids, share_neck_group_ids,
share_decoder_group_ids, share_adapter_group_ids)
loss_weight_sum = float(np.sum(np.array([task['loss_weight'] for task in tasks.values()])))
ginfo.task_name = tasks[ginfo.task_id]['name']
ginfo.task_names = [tasks[i]['name'] for i in range(ginfo.task_num)]
ginfo.task_weight = float(tasks[ginfo.task_id]['loss_weight']) / loss_weight_sum
ginfo.task_type = tasks[ginfo.task_id].get('type', 'normal')
ginfo.task_types = [tasks[i].get('type', 'normal') for i in range(ginfo.task_num)]
ginfo.task_random_seed = tasks[ginfo.task_id].get('random_seed', 0)
for p in task_specific_param:
if p in config['tasks'][ginfo.task_id]:
config['common'][p] = config['tasks'][ginfo.task_id][p]
printlog('{} of task{} has been overided to {}'.format(p, ginfo.task_id, config['common'][p]))
logger = logging.getLogger('global_logger')
self.world_size = world_size
self.rank = rank
self.ginfo = ginfo
self.config = config
self.config_file = config_file
class Config_Hulk(object):
def __init__(self, config_file, noginfo=False, spec_ginfo_index=None):
with open(config_file) as f:
config = yaml.load(f, Loader=loader)
# print('config',config)
self.config_path = config_file
if dist.is_initialized():
world_size = dist.get_world_size()
rank = dist.get_rank()
else:
world_size = 1
rank = 0
if noginfo:
ginfo = None
else: # cherrypick from tasks
tasks = config['tasks']
num_tasks = len(tasks)
if spec_ginfo_index is not None:
assert spec_ginfo_index < len(tasks), \
'spec_ginfo_index={} is larger than num_tasks={}'.format(spec_ginfo_index, len(tasks))
tmp_config = copy.deepcopy(config)
config['tasks'] = dict()
config['tasks'][0] = tmp_config['tasks'][spec_ginfo_index]
config['tasks'][0]['gres_ratio'] = 1
tasks = config['tasks']
num_tasks = len(tasks)
# parse task_common and assign to each task
task_common = config.get('task_common', None)
if task_common is not None:
for i in range(num_tasks):
for k,v in task_common.items():
if not k in tasks[i]:
printlog('setting {} to {} for task {}'.format(k, v, i))
tasks[i][k] = v
group_spec = [tasks[i].get('gres_ratio',1) for i in range(num_tasks)]
## share group spec
if config['common'].get('share_backbone_group', False):
share_backbone_group_ids = config['common']['share_backbone_group'][:num_tasks]
else:
share_backbone_group_ids = [0 for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_decoder_group', False):
share_decoder_group_ids = config['common']['share_decoder_group'][:num_tasks]
else:
share_decoder_group_ids = [i for i in range(num_tasks)] # hardcoded prior
# use modality groups to control the communication of neck, adapter, and output proj
if config['common'].get('share_rgb_group', False):
share_rgb_group_ids = config['common']['share_rgb_group'][:num_tasks]
else:
share_rgb_group_ids = [i for i in range(num_tasks)] # hardcoded prior
if config['common'].get('share_dense_labeling_group', False):
share_dense_labeling_group_ids = config['common']['share_dense_labeling_group'][:num_tasks]
else:
share_dense_labeling_group_ids = [i for i in range(num_tasks)]
if config['common'].get('share_sparse_labeling_group', False):
share_sparse_labeling_group_ids = config['common']['share_sparse_labeling_group'][:num_tasks]
else:
share_sparse_labeling_group_ids = [i for i in range(num_tasks)]
if config['common'].get('share_text_group', False):
share_text_group_ids = config['common']['share_text_group'][:num_tasks]
else:
share_text_group_ids = [i for i in range(num_tasks)]
if config['common'].get('share_video_group', False):
share_video_group_ids = config['common']['share_video_group'][:num_tasks]
else:
share_video_group_ids = [i for i in range(num_tasks)]
if config['common'].get('share_modality_group', False):
share_modality_group_ids = config['common']['share_modality_group'][:num_tasks]
else:
share_modality_group_ids = [i for i in range(num_tasks)]
# ginfo = specific_group_split_modality_groups(group_spec, share_backbone_group_ids,
# share_decoder_group_ids, share_rgb_group_ids,
# share_video_group_ids, share_dense_labeling_group_ids,
# share_sparse_labeling_group_ids, share_text_group_ids,
# share_modality_group_ids)
import easydict
ginfo = easydict.EasyDict()
ginfo.task_id = 5
ginfo.task_num = 5
ginfo.backbone_share_group = None
ginfo.task_rank = 0
loss_weight_sum = float(np.sum(np.array([task['loss_weight'] for task in tasks.values()])))
ginfo.task_name = tasks[ginfo.task_id]['name']
ginfo.task_names = [tasks[i]['name'] for i in range(ginfo.task_num)]
# ginfo.task_weight = float(tasks[ginfo.task_id]['loss_weight']) / loss_weight_sum
ginfo.task_weight = float(tasks[ginfo.task_id]['loss_weight'])
ginfo.task_type = tasks[ginfo.task_id].get('type', 'normal')
ginfo.task_types = [tasks[i].get('type', 'normal') for i in range(ginfo.task_num)]
ginfo.task_random_seed = tasks[ginfo.task_id].get('random_seed', 0)
for p in task_specific_param:
if p in config['tasks'][ginfo.task_id]:
config['common'][p] = config['tasks'][ginfo.task_id][p]
printlog('{} of task{} has been overided to {}'.format(p, ginfo.task_id, config['common'][p]))
logger = logging.getLogger('global_logger')
self.world_size = world_size
self.rank = rank
self.ginfo = ginfo
self.config = config
self.config_file = config_file
# def __repr__(self) -> str:
# return str(self.config)
|