vn-law-embedding / README.md
truro7's picture
Update README.md
96774e4 verified
metadata
license: apache-2.0
datasets:
  - truro7/vn-law-questions-and-corpus
language:
  - vi
base_model: hiieu/halong_embedding
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
pipeline_tag: sentence-similarity
tags:
  - legal
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - loss:MatryoshkaLoss
  - loss:MultipleNegativesRankingLoss
model-index:
  - name: VN Law Embedding
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        metrics:
          - type: cosine_accuracy@1
            value: 0.623
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.792
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.851
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.9
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.623
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.412
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.31
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.184
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.353
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.608
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.722
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.823
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.706
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.717
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.645
            name: Cosine Map@100

VN Law Embedding

VN Law Embedding is a Vietnamese text embedding model designed for Retrieval-Augmented Generation (RAG), specifically to retrieve precise legal documents in response to legal questions.

The model is trained on a dataset of Vietnamese legal questions and corresponding legal documents and evaluated using an Information Retrieval Evaluator.

It uses Matryoshka loss during training and can be truncated to smaller dimensions, allowing for faster comparisons between queries and documents without sacrificing performance.

Usage

Direct usage

from sentence_transformers import SentenceTransformer
import torch
import torch.nn.functional as F

model = SentenceTransformer("truro7/vn-law-embedding", truncate_dim = 128)

query = "Trộm cắp sẽ bị xử lý như thế nào?" 

corpus = """

[100_2015_QH13]

LUẬT HÌNH SỰ
Điều 173. Tội trộm cắp tài sản

Khoản 1:

1. Người nào trộm cắp tài sản của người khác trị giá từ 2.000.000 đồng đến dưới 50.000.000 đồng hoặc dưới 2.000.000 đồng nhưng thuộc một trong các trường hợp sau đây, thì bị phạt cải tạo không giam giữ đến 03 năm hoặc phạt tù từ 06 tháng đến 03 năm:
a) Đã bị xử phạt vi phạm hành chính về hành vi chiếm đoạt tài sản mà còn vi phạm;
b) Đã bị kết án về tội này hoặc về một trong các tội quy định tại các điều 168, 169, 170, 171, 172, 174, 175 và 290 của Bộ luật này, chưa được xóa án tích mà còn vi phạm;
c) Gây ảnh hưởng xấu đến an ninh, trật tự, an toàn xã hội;
d) Tài sản là phương tiện kiếm sống chính của người bị hại và gia đình họ; tài sản là kỷ vật, di vật, đồ thờ cúng có giá trị đặc biệt về mặt tinh thần đối với người bị hại.
    
"""

embedding = torch.tensor([model.encode(query)])
corpus_embeddings = torch.tensor([model.encode(corpus)])

cosine_similarities = F.cosine_similarity(embedding, corpus_embeddings)

print(cosine_similarities.item()) #0.81


Retrieve top k documents

from sentence_transformers import SentenceTransformer
import torch
import torch.nn.functional as F

model = SentenceTransformer("truro7/vn-law-embedding", truncate_dim = 128)

all_docs = read_all_docs() # Read all legal documents -> list of document contents 
top_k = 3
embedding_docs = torch.load(vectordb_path, weights_only=False).to(self.device) # Vector database

query = "Trộm cắp sẽ bị xử lý như thế nào?" 
embedding = torch.tensor(model.encode(query))

cosine_similarities = F.cosine_similarity(embedding.unsqueeze(0).expand(self.embedding_docs.shape[0], 1, 128), self.embedding_docs, dim = -1).view(-1)
top_k = cosine_similarities.topk(k)

top_k_indices = top_k.indices
top_k_values = top_k.values

print(top_k_values)  #Similarity scores

for i in top_k_indices:     #Show top k relevant documents
    print(all_docs[i])
    print("___________________________________________")