h2o-danube2 with ChatML template

This is a BAdam fine-tuned danube2 base model. It uses the ChatML template and was trained on the glaive-function-calling-v2 dataset from GlaiveAI that has been converted to ShareGPT by hiyouga of LLama-Factory fame.

Template

ChatML

<|im_start|>system
{{system}}
<tools>
{{json_format_tools}}
</tools><|im_end|>
<|im_start|>user
{{instruction}}<|im_end|>
<|im_start|>assistant
<tool_call>
{{tool_call}}
</tool_call><|im_end|>
<|im_start|>tool
<tool_response>
{{response}}
</tool_response><|im_end|>

LLama-Factory

_register_template(
    name="hermes_chatml",
    format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
    format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
    format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
    format_function=FunctionFormatter(slots=["<tool_call>\n{\"name\":\"{{name}}\", \"arguments\":{{arguments}}}\n</tool_call><|im_end|>\n"]),
    format_observation=StringFormatter(slots=["<|im_start|>tool\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]),
    format_tools=ToolFormatter(tool_format="chatml"),
    stop_words=["<|im_end|>"],
)

BAdam config

### model
model_name_or_path: danube2-base-chatml

### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 1
badam_start_block: 5
seed: 404

### dataset
dataset: glaive_toolcall_100k
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12

### output
output_dir: glaive-tool-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false

### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 0.000005
num_train_epochs: 1
lr_scheduler_type: cosine
warmup_ratio: 0.01
pure_bf16: true
flash_attn: fa2

### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000

BAdam Training results

Training Loss Epoch Step Validation Loss
0.3914 0.1607 1000 0.2984
0.3256 0.3214 2000 0.2819
0.4131 0.4821 3000 0.2765
0.3922 0.6428 4000 0.2736
0.3528 0.8036 5000 0.2724
0.3477 0.9643 6000 0.2724
Downloads last month
16
Safetensors
Model size
1.83B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for trollek/danube2-1.8b-glaive-function-calling-v2

Finetuned
(13)
this model

Dataset used to train trollek/danube2-1.8b-glaive-function-calling-v2

Collection including trollek/danube2-1.8b-glaive-function-calling-v2