trbeers's picture
Add new SentenceTransformer model.
62e506d verified
metadata
language: []
library_name: sentence-transformers
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:8137
  - loss:CosineSimilarityLoss
base_model: distilbert/distilroberta-base
datasets: []
metrics:
  - pearson_cosine
  - spearman_cosine
  - pearson_manhattan
  - spearman_manhattan
  - pearson_euclidean
  - spearman_euclidean
  - pearson_dot
  - spearman_dot
  - pearson_max
  - spearman_max
widget:
  - source_sentence: Proficient in chemical or plasma cleaning methods.
    sentences:
      - Skilled in circuit board assembly
      - Created custom reports in Workday for HR metrics
      - Developed a website using HTML and CSS
  - source_sentence: >-
      Expertise in data modeling, SQL query design, and execution, preferably in
      the financial services sector.
    sentences:
      - over 2 years of working in a retail customer support role
      - Operated a forklift for material handling
      - Proficient in crafting SQL queries for large datasets
  - source_sentence: >-
      The ability to collaborate across teams and adapt to a fast-paced
      environment is highly valued.
    sentences:
      - >-
        Demonstrated flexibility in meeting tight deadlines while working with
        cross-functional teams
      - Processed confidential client documents with high attention to detail
      - Assisted with quality control checks on finished products
  - source_sentence: >-
      Experience advocating for clients while effectively managing tough
      conversations.
    sentences:
      - Designed responsive web layouts with HTML and CSS
      - managed BIM coordination projects using Navisworks
      - Focused solely on administrative tasks without client involvement
  - source_sentence: Knowledge of medical equipment and veterinary terminology is necessary.
    sentences:
      - Conducted electrical system design reviews
      - Skilled in component sorting for various projects
      - Worked as a pet trainer for obedience classes
pipeline_tag: sentence-similarity
model-index:
  - name: SentenceTransformer based on distilbert/distilroberta-base
    results:
      - task:
          type: semantic-similarity
          name: Semantic Similarity
        dataset:
          name: sts test
          type: sts-test
        metrics:
          - type: pearson_cosine
            value: 0.8711224171717953
            name: Pearson Cosine
          - type: spearman_cosine
            value: 0.8269886257122767
            name: Spearman Cosine
          - type: pearson_manhattan
            value: 0.8510242443923921
            name: Pearson Manhattan
          - type: spearman_manhattan
            value: 0.8224876706713816
            name: Spearman Manhattan
          - type: pearson_euclidean
            value: 0.8563696604724638
            name: Pearson Euclidean
          - type: spearman_euclidean
            value: 0.8221599636921783
            name: Spearman Euclidean
          - type: pearson_dot
            value: 0.8482029844070074
            name: Pearson Dot
          - type: spearman_dot
            value: 0.8223271611305473
            name: Spearman Dot
          - type: pearson_max
            value: 0.8711224171717953
            name: Pearson Max
          - type: spearman_max
            value: 0.8269886257122767
            name: Spearman Max

SentenceTransformer based on distilbert/distilroberta-base

This is a sentence-transformers model finetuned from distilbert/distilroberta-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: distilbert/distilroberta-base
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 768 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("trbeers/distilroberta-base-sts")
# Run inference
sentences = [
    'Knowledge of medical equipment and veterinary terminology is necessary.',
    'Worked as a pet trainer for obedience classes',
    'Skilled in component sorting for various projects',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.8711
spearman_cosine 0.827
pearson_manhattan 0.851
spearman_manhattan 0.8225
pearson_euclidean 0.8564
spearman_euclidean 0.8222
pearson_dot 0.8482
spearman_dot 0.8223
pearson_max 0.8711
spearman_max 0.827

Training Details

Training Dataset

Unnamed Dataset

  • Size: 8,137 training samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string int
    details
    • min: 6 tokens
    • mean: 16.7 tokens
    • max: 40 tokens
    • min: 5 tokens
    • mean: 10.46 tokens
    • max: 24 tokens
    • 0: ~49.50%
    • 1: ~50.50%
  • Samples:
    sentence1 sentence2 score
    Ability to use tools such as power drills as required for the job. Proficient in operating power tools for installation tasks 1
    Experience with networking, specifically the TCP/IP stack, routing, ports, and services is essential. Designed user interfaces for web applications 0
    Ability to establish and maintain positive relationships with coaches, student-athletes, and vendors regarding equipment selection. Developed strong partnerships with vendors forEquipment procurement 1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 2,035 evaluation samples
  • Columns: sentence1, sentence2, and score
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 score
    type string string int
    details
    • min: 6 tokens
    • mean: 16.2 tokens
    • max: 36 tokens
    • min: 5 tokens
    • mean: 10.47 tokens
    • max: 22 tokens
    • 0: ~48.10%
    • 1: ~51.90%
  • Samples:
    sentence1 sentence2 score
    Experience with vulnerability management tools like Nessus and Nexpose. managed network configurations 0
    Willingness to obtain a Texas fire extinguishers license as necessary. Currently pursuing a Texas fire extinguishers license 1
    Experience in defining and maintaining enterprise architecture that supports business scalability. Led the development of enterprise architecture frameworks for a multinational corporation 1
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • num_train_epochs: 1
  • warmup_ratio: 0.1

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step sts-test_spearman_cosine
1.0 64 0.8270

Framework Versions

  • Python: 3.10.11
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.3.1
  • Accelerate: 0.31.0
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}