Upload folder using huggingface_hub

#5
by toto10 - opened
This view is limited to 50 files because it contains too many changes.  See the raw diff here.
Files changed (50) hide show
  1. .gitattributes +21 -0
  2. Abysz-LAB-Ext/LICENSE +674 -0
  3. Abysz-LAB-Ext/README.md +53 -0
  4. Abysz-LAB-Ext/__init__.py +0 -0
  5. Abysz-LAB-Ext/instructions.txt +0 -0
  6. Abysz-LAB-Ext/scripts/Abysz_Lab.py +1202 -0
  7. Abysz-LAB-Ext/scripts/__pycache__/Abysz_Lab.cpython-310.pyc +0 -0
  8. Auto-Photoshop-StableDiffusion-Plugin/scripts/__pycache__/main.cpython-310.pyc +0 -0
  9. Auto-Photoshop-StableDiffusion-Plugin/scripts/__pycache__/test.cpython-310.pyc +0 -0
  10. Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/img2imgapi.cpython-310.pyc +0 -0
  11. Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/metadata_to_json.cpython-310.pyc +0 -0
  12. Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/prompt_shortcut.cpython-310.pyc +0 -0
  13. Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/search.cpython-310.pyc +0 -0
  14. Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/serverHelper.cpython-310.pyc +0 -0
  15. Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/serverMain.cpython-310.pyc +0 -0
  16. SD-CN-Animation/.gitignore +6 -0
  17. SD-CN-Animation/FloweR/__pycache__/model.cpython-310.pyc +0 -0
  18. SD-CN-Animation/FloweR/model.py +191 -0
  19. SD-CN-Animation/LICENSE +22 -0
  20. SD-CN-Animation/RAFT/LICENSE +29 -0
  21. SD-CN-Animation/RAFT/__pycache__/corr.cpython-310.pyc +0 -0
  22. SD-CN-Animation/RAFT/__pycache__/extractor.cpython-310.pyc +0 -0
  23. SD-CN-Animation/RAFT/__pycache__/raft.cpython-310.pyc +0 -0
  24. SD-CN-Animation/RAFT/__pycache__/update.cpython-310.pyc +0 -0
  25. SD-CN-Animation/RAFT/corr.py +91 -0
  26. SD-CN-Animation/RAFT/extractor.py +267 -0
  27. SD-CN-Animation/RAFT/raft.py +144 -0
  28. SD-CN-Animation/RAFT/update.py +139 -0
  29. SD-CN-Animation/RAFT/utils/__init__.py +0 -0
  30. SD-CN-Animation/RAFT/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  31. SD-CN-Animation/RAFT/utils/__pycache__/utils.cpython-310.pyc +0 -0
  32. SD-CN-Animation/RAFT/utils/augmentor.py +246 -0
  33. SD-CN-Animation/RAFT/utils/flow_viz.py +132 -0
  34. SD-CN-Animation/RAFT/utils/frame_utils.py +137 -0
  35. SD-CN-Animation/RAFT/utils/utils.py +82 -0
  36. SD-CN-Animation/examples/bonefire_1.mp4 +0 -0
  37. SD-CN-Animation/examples/bonfire_1.gif +0 -0
  38. SD-CN-Animation/examples/cn_settings.png +0 -0
  39. SD-CN-Animation/examples/diamond_4.gif +0 -0
  40. SD-CN-Animation/examples/diamond_4.mp4 +0 -0
  41. SD-CN-Animation/examples/flower_1.gif +3 -0
  42. SD-CN-Animation/examples/flower_1.mp4 +3 -0
  43. SD-CN-Animation/examples/flower_11.mp4 +3 -0
  44. SD-CN-Animation/examples/girl_org.gif +3 -0
  45. SD-CN-Animation/examples/girl_to_jc.gif +3 -0
  46. SD-CN-Animation/examples/girl_to_jc.mp4 +3 -0
  47. SD-CN-Animation/examples/girl_to_wc.gif +3 -0
  48. SD-CN-Animation/examples/girl_to_wc.mp4 +3 -0
  49. SD-CN-Animation/examples/gold_1.gif +3 -0
  50. SD-CN-Animation/examples/gold_1.mp4 +0 -0
.gitattributes CHANGED
@@ -43,3 +43,24 @@ sd_feed/assets/pinterest.png filter=lfs diff=lfs merge=lfs -text
43
  sd-3dmodel-loader/models/Samba[[:space:]]Dancing.fbx filter=lfs diff=lfs merge=lfs -text
44
  sd-3dmodel-loader/models/pose.vrm filter=lfs diff=lfs merge=lfs -text
45
  sd-webui-3d-open-pose-editor/downloads/pose/0.5.1675469404/pose_solution_packed_assets.data filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
43
  sd-3dmodel-loader/models/Samba[[:space:]]Dancing.fbx filter=lfs diff=lfs merge=lfs -text
44
  sd-3dmodel-loader/models/pose.vrm filter=lfs diff=lfs merge=lfs -text
45
  sd-webui-3d-open-pose-editor/downloads/pose/0.5.1675469404/pose_solution_packed_assets.data filter=lfs diff=lfs merge=lfs -text
46
+ SD-CN-Animation/examples/flower_1.gif filter=lfs diff=lfs merge=lfs -text
47
+ SD-CN-Animation/examples/flower_1.mp4 filter=lfs diff=lfs merge=lfs -text
48
+ SD-CN-Animation/examples/flower_11.mp4 filter=lfs diff=lfs merge=lfs -text
49
+ SD-CN-Animation/examples/girl_org.gif filter=lfs diff=lfs merge=lfs -text
50
+ SD-CN-Animation/examples/girl_to_jc.gif filter=lfs diff=lfs merge=lfs -text
51
+ SD-CN-Animation/examples/girl_to_jc.mp4 filter=lfs diff=lfs merge=lfs -text
52
+ SD-CN-Animation/examples/girl_to_wc.gif filter=lfs diff=lfs merge=lfs -text
53
+ SD-CN-Animation/examples/girl_to_wc.mp4 filter=lfs diff=lfs merge=lfs -text
54
+ SD-CN-Animation/examples/gold_1.gif filter=lfs diff=lfs merge=lfs -text
55
+ SD-CN-Animation/examples/macaroni_1.gif filter=lfs diff=lfs merge=lfs -text
56
+ SD-CN-Animation/examples/tree_2.gif filter=lfs diff=lfs merge=lfs -text
57
+ SD-CN-Animation/examples/tree_2.mp4 filter=lfs diff=lfs merge=lfs -text
58
+ ebsynth_utility/imgs/sample1.mp4 filter=lfs diff=lfs merge=lfs -text
59
+ ebsynth_utility/imgs/sample2.mp4 filter=lfs diff=lfs merge=lfs -text
60
+ ebsynth_utility/imgs/sample3.mp4 filter=lfs diff=lfs merge=lfs -text
61
+ ebsynth_utility/imgs/sample4.mp4 filter=lfs diff=lfs merge=lfs -text
62
+ ebsynth_utility/imgs/sample5.mp4 filter=lfs diff=lfs merge=lfs -text
63
+ ebsynth_utility/imgs/sample6.mp4 filter=lfs diff=lfs merge=lfs -text
64
+ ebsynth_utility/imgs/sample_anyaheh.mp4 filter=lfs diff=lfs merge=lfs -text
65
+ ebsynth_utility/imgs/sample_autotag.mp4 filter=lfs diff=lfs merge=lfs -text
66
+ ebsynth_utility/imgs/sample_clipseg.mp4 filter=lfs diff=lfs merge=lfs -text
Abysz-LAB-Ext/LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
Abysz-LAB-Ext/README.md ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Abysz deflicking & temporal coherence lab.
2
+ ## Automatic1111 Extension. Beta 0.1.9
3
+
4
+ ![0 1 9](https://user-images.githubusercontent.com/112580728/228404036-5dbf11f1-51e3-4fb0-9c72-c3c2c0deb00e.png)
5
+ |
6
+ ![ABYSZLAB09b](https://user-images.githubusercontent.com/112580728/226314389-ac838672-4af0-4d94-bde8-26fd83610a5f.png)
7
+
8
+ ## How DFI works:
9
+
10
+ https://user-images.githubusercontent.com/112580728/226049549-e61bddb3-88ea-4953-893d-9993dd165180.mp4
11
+
12
+ # Requirements
13
+
14
+ OpenCV: ```pip install opencv-python```
15
+
16
+ Imagemagick library: https://imagemagick.org/script/download.php
17
+
18
+ ## Basic guide:
19
+ Differential frame interpolation analyzes the stability of the original video, and processes the generated video with that information. Example, if your original background is static, it will force the generated video to respect that, acting as a complex deflicker. It is an aggressive process, for which we need and will have a lot of control.
20
+
21
+ Gui version 0.0.6 includes the following parameters.
22
+
23
+ **Frame refresh frequency:** Every how many frames the interpolation is reduced. It allows to keep more information of the generated video, and avoid major ghosting.
24
+
25
+ **Refresh Strength:** Opacity % of the interpolated information. 0 refreshes the entire frame, with no changes. Here you control how much change you allow overall.
26
+
27
+ **DFI Strength:** Amount of information that tries to force. 4-6 recommended.
28
+
29
+ **DFI Deghost:** A variable that generally reduces the areas affected by DFI. This can reduce ghosting without changing DFI strength.
30
+
31
+ **Smooth:** Smoothes the interpolation. High values reduce the effectiveness of the process.
32
+
33
+ **Source denoise:** Improves scanning in noisy sources.
34
+
35
+ (DEFLICKERS PLAYGROUND ADDED)
36
+ (FUSE AND VIDEO EXTRACT ADDED)
37
+
38
+ # USE STRATEGIES:
39
+
40
+ ### Basic:
41
+ The simplest use is to find the balance between deflicking and deghosting. However, this is not efficient.
42
+
43
+ ## Multipass:
44
+ The most efficient way to use this tool is to allow a certain amount of corruption and ghosting, in exchange for more stable video. Once we have that base, we must use a second step in Stable Diffusion, at low denoising (1-4). In most cases, this brings back much of the detail, but retains the stability we've gained.
45
+
46
+ # Multibatch-controlnet:
47
+ The best, best way to use this tool is to use our "stabilized" video in img2img, and the original (REAL) video in controlnet HED. Then use a parallel batch to retrieve details. This considerably improves the multipass technique. Unfortunately, that function is not available in the controlnet gui as of this writing.
48
+
49
+ # TODO
50
+ Automatic1111 extension. Given my limited knowledge of programming, I had trouble getting my script to interact within A1111. I hope soon to solve details to integrate this tool.
51
+ Also, there are many important utilities that are in development, waiting to be added soon, such as polar rendering (like "front/back", but more complex), gif viewer, source analysis, preprocessing, etc.
52
+
53
+
Abysz-LAB-Ext/__init__.py ADDED
File without changes
Abysz-LAB-Ext/instructions.txt ADDED
File without changes
Abysz-LAB-Ext/scripts/Abysz_Lab.py ADDED
@@ -0,0 +1,1202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import subprocess
3
+ import os
4
+ import imageio
5
+ import numpy as np
6
+ from gradio.outputs import Image
7
+ from PIL import Image
8
+ import sys
9
+ import cv2
10
+ import shutil
11
+ import time
12
+ import math
13
+
14
+ from modules import shared
15
+ from modules import scripts
16
+ from modules import script_callbacks
17
+
18
+
19
+ class Script(scripts.Script):
20
+ def title(self):
21
+ return "Abysz LAB"
22
+
23
+ def show(self, is_img2img):
24
+ return scripts.AlwaysVisible
25
+
26
+ def ui(self, is_img2img):
27
+ return []
28
+
29
+ def main(ruta_entrada_1, ruta_entrada_2, ruta_salida, denoise_blur, dfi_strength, dfi_deghost, test_mode, inter_denoise, inter_denoise_size, inter_denoise_speed, fine_blur, frame_refresh_frequency, refresh_strength, smooth, frames_limit):
30
+
31
+ maskD = os.path.join(os.getcwd(), 'extensions', 'Abysz-LAB-Ext', 'scripts', 'Run', 'MaskD')
32
+ maskS = os.path.join(os.getcwd(), 'extensions', 'Abysz-LAB-Ext', 'scripts', 'Run', 'MaskS')
33
+ #output = os.path.join(os.getcwd(), 'extensions', 'Abysz-LAB-Ext', 'scripts', 'Run', 'Output')
34
+ source = os.path.join(os.getcwd(), 'extensions', 'Abysz-LAB-Ext', 'scripts', 'Run', 'Source')
35
+ #gen = os.path.join(os.getcwd(), 'extensions', 'Abysz-LAB-Ext', 'scripts', 'Run', 'Gen')
36
+
37
+ # verificar si las carpetas existen y eliminarlas si es el caso
38
+ if os.path.exists(source): # verificar si existe la carpeta source
39
+ shutil.rmtree(source) # eliminar la carpeta source y su contenido
40
+ if os.path.exists(maskS): # verificar si existe la carpeta maskS
41
+ shutil.rmtree(maskS) # eliminar la carpeta maskS y su contenido
42
+ if os.path.exists(maskD): # verificar si existe la carpeta maskS
43
+ shutil.rmtree(maskD) # eliminar la carpeta maskS y su contenido
44
+
45
+ os.makedirs(source, exist_ok=True)
46
+ os.makedirs(maskS, exist_ok=True)
47
+ os.makedirs(ruta_salida, exist_ok=True)
48
+ os.makedirs(maskD, exist_ok=True)
49
+ #os.makedirs(gen, exist_ok=True)
50
+
51
+
52
+ def copy_images(ruta_entrada_1, ruta_entrada_2, frames_limit=0):
53
+ # Copiar todas las imágenes de la carpeta ruta_entrada_1 a la carpeta Source
54
+ count = 0
55
+
56
+ archivos = os.listdir(ruta_entrada_1)
57
+ archivos_ordenados = sorted(archivos)
58
+
59
+ for i, file in enumerate(archivos_ordenados):
60
+ if file.endswith(".jpg") or file.endswith(".jpeg") or file.endswith(".png"):
61
+ img = Image.open(os.path.join(ruta_entrada_1, file))
62
+ rgb_img = img.convert('RGB')
63
+ rgb_img.save(os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/Source", "{:04d}.jpeg".format(i+1)), "jpeg", quality=100)
64
+ count += 1
65
+ if frames_limit > 0 and count >= frames_limit:
66
+ break
67
+
68
+
69
+ # Llamar a la función copy_images para copiar las imágenes
70
+ copy_images(ruta_entrada_1,ruta_salida, frames_limit)
71
+
72
+ def sresize(ruta_entrada_2):
73
+ gen_folder = ruta_entrada_2
74
+
75
+ # Carpeta donde se encuentran las imágenes de FULL
76
+ full_folder = "./extensions/Abysz-LAB-Ext/scripts/Run/Source"
77
+
78
+ # Obtener la primera imagen en la carpeta Gen
79
+ gen_images = os.listdir(gen_folder)
80
+ gen_image_path = os.path.join(gen_folder, gen_images[0])
81
+ gen_image = cv2.imread(gen_image_path)
82
+ gen_height, gen_width = gen_image.shape[:2]
83
+ gen_aspect_ratio = gen_width / gen_height
84
+
85
+ # Recorrer todas las imágenes en la carpeta FULL
86
+ for image_name in sorted(os.listdir(full_folder)):
87
+ image_path = os.path.join(full_folder, image_name)
88
+ image = cv2.imread(image_path)
89
+ height, width = image.shape[:2]
90
+ aspect_ratio = width / height
91
+
92
+ if aspect_ratio != gen_aspect_ratio:
93
+ if aspect_ratio > gen_aspect_ratio:
94
+ # La imagen es más ancha que la imagen de Gen
95
+ crop_width = int(height * gen_aspect_ratio)
96
+ x = int((width - crop_width) / 2)
97
+ image = image[:, x:x+crop_width]
98
+ else:
99
+ # La imagen es más alta que la imagen de Gen
100
+ crop_height = int(width / gen_aspect_ratio)
101
+ y = int((height - crop_height) / 2)
102
+ image = image[y:y+crop_height, :]
103
+
104
+ # Redimensionar la imagen de FULL a la resolución de la imagen de Gen
105
+ image = cv2.resize(image, (gen_width, gen_height))
106
+
107
+ # Guardar la imagen redimensionada en la carpeta FULL
108
+ cv2.imwrite(os.path.join(full_folder, image_name), image)
109
+
110
+ sresize(ruta_entrada_2)
111
+
112
+ def s_g_rename(ruta_entrada_2):
113
+
114
+ gen_dir = ruta_entrada_2 # ruta de la carpeta "Source"
115
+
116
+ # Obtener una lista de los nombres de archivo en la carpeta ruta_entrada_2
117
+ files2 = os.listdir(gen_dir)
118
+ files2 = sorted(files2) # ordenar alfabéticamente la lista
119
+ # Renombrar cada archivo
120
+ for i, file_name in enumerate(files2):
121
+ old_path = os.path.join(gen_dir, file_name) # ruta actual del archivo
122
+ new_file_name = f"{i+1:04d}rename" # nuevo nombre de archivo con formato %04d
123
+ new_path = os.path.join(gen_dir, new_file_name + os.path.splitext(file_name)[1]) # nueva ruta del archivo
124
+ try:
125
+ os.rename(old_path, new_path)
126
+ except FileExistsError:
127
+ print(f"El archivo {new_file_name} ya existe. Se omite su renombre.")
128
+
129
+ # Obtener una lista de los nombres de archivo en la carpeta ruta_entrada_2
130
+ files2 = os.listdir(gen_dir)
131
+ files2 = sorted(files2) # ordenar alfabéticamente la lista
132
+ # Renombrar cada archivo
133
+ for i, file_name in enumerate(files2):
134
+ old_path = os.path.join(gen_dir, file_name) # ruta actual del archivo
135
+ new_file_name = f"{i+1:04d}" # nuevo nombre de archivo con formato %04d
136
+ new_path = os.path.join(gen_dir, new_file_name + os.path.splitext(file_name)[1]) # nueva ruta del archivo
137
+ try:
138
+ os.rename(old_path, new_path)
139
+ except FileExistsError:
140
+ print(f"El archivo {new_file_name} ya existe. Se omite su renombre.")
141
+
142
+ s_g_rename(ruta_entrada_2)
143
+
144
+ # Obtener el primer archivo de la carpeta ruta_entrada_2
145
+ gen_files = os.listdir(ruta_entrada_2)
146
+ if gen_files:
147
+ first_gen_file = gen_files[0]
148
+
149
+ # Copiar el archivo a la carpeta "Output" y reemplazar si ya existe
150
+ #output_file = "Output" + first_gen_file
151
+ #shutil.copyfile(ruta_entrada_2 + first_gen_file, output_file)
152
+ output_file = os.path.join(ruta_salida, first_gen_file)
153
+ shutil.copyfile(os.path.join(ruta_entrada_2, first_gen_file), output_file)
154
+ #subprocess call
155
+ def denoise(denoise_blur):
156
+ if denoise_blur < 1: # Condición 1: strength debe ser mayor a 1
157
+ return
158
+
159
+ denoise_kernel = denoise_blur
160
+ # Obtener la lista de nombres de archivos en la carpeta source
161
+ files = os.listdir("./extensions/Abysz-LAB-Ext/scripts/Run/Source")
162
+
163
+ # Crear una carpeta destino si no existe
164
+ #if not os.path.exists("dest"):
165
+ # os.mkdir("dest")
166
+
167
+ # Recorrer cada archivo en la carpeta source
168
+ for file in files:
169
+ # Leer la imagen con opencv
170
+ img = cv2.imread(os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/Source", file))
171
+
172
+ # Aplicar el filtro de blur con un tamaño de kernel 5x5
173
+ dst = cv2.bilateralFilter(img, denoise_kernel, 31, 31)
174
+
175
+ # Eliminar el archivo original
176
+ #os.remove(os.path.join("SourceDFI", file))
177
+
178
+ # Guardar la imagen resultante en la carpeta destino con el mismo nombre
179
+ cv2.imwrite(os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/Source", file), dst)
180
+
181
+ denoise(denoise_blur)
182
+
183
+ # Definir la carpeta donde están los archivos
184
+ carpeta = './extensions/Abysz-LAB-Ext/scripts/Run/Source'
185
+
186
+ # Crear la carpeta MaskD si no existe
187
+ os.makedirs('./extensions/Abysz-LAB-Ext/scripts/Run/MaskD', exist_ok=True)
188
+
189
+ # Inicializar contador
190
+ contador = 1
191
+
192
+ umbral_size = dfi_strength
193
+ # Iterar a través de los archivos de imagen en la carpeta Source
194
+ for filename in sorted(os.listdir(carpeta)):
195
+ # Cargar la imagen actual y la siguiente en escala de grises
196
+ if contador > 1:
197
+ siguiente = cv2.imread(os.path.join(carpeta, filename), cv2.IMREAD_GRAYSCALE)
198
+ diff = cv2.absdiff(anterior, siguiente)
199
+
200
+ # Aplicar un umbral y guardar la imagen resultante en la carpeta MaskD. Menos es más.
201
+ umbral = umbral_size
202
+ umbralizado = cv2.threshold(diff, umbral, 255, cv2.THRESH_BINARY_INV)[1] # Invertir los colores
203
+ cv2.imwrite(os.path.join('./extensions/Abysz-LAB-Ext/scripts/Run/MaskD', f'{contador-1:04d}.png'), umbralizado)
204
+
205
+ anterior = cv2.imread(os.path.join(carpeta, filename), cv2.IMREAD_GRAYSCALE)
206
+ contador += 1
207
+
208
+ #Actualmente, el tipo de umbralización es cv2.THRESH_BINARY_INV, que invierte los colores de la imagen umbralizada.
209
+ #Puedes cambiarlo a otro tipo de umbralización,
210
+ #como cv2.THRESH_BINARY, cv2.THRESH_TRUNC, cv2.THRESH_TOZERO o cv2.THRESH_TOZERO_INV.
211
+
212
+
213
+ # Obtener la lista de los nombres de los archivos en la carpeta MaskD
214
+ files = os.listdir("./extensions/Abysz-LAB-Ext/scripts/Run/MaskD")
215
+ # Definir la carpeta donde están los archivos
216
+ carpeta = "./extensions/Abysz-LAB-Ext/scripts/Run/MaskD"
217
+ blur_kernel = smooth
218
+
219
+ # Iterar sobre cada archivo
220
+ for file in files:
221
+ if dfi_deghost == 0:
222
+
223
+ continue
224
+ # Leer la imagen de la carpeta MaskD
225
+ #img = cv2.imread("MaskD" + file)
226
+ img = cv2.imread(os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/MaskD", file))
227
+
228
+ # Invertir la imagen usando la función bitwise_not()
229
+ img_inv = cv2.bitwise_not(img)
230
+
231
+ kernel_size = dfi_deghost
232
+
233
+ # Dilatar la imagen usando la función dilate()
234
+ kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) # Puedes cambiar el tamaño y la forma del kernel según tus preferencias
235
+ img_dil = cv2.dilate(img_inv, kernel)
236
+
237
+ # Volver a invertir la imagen usando la función bitwise_not()
238
+ img_out = cv2.bitwise_not(img_dil)
239
+
240
+ # Sobrescribir la imagen en la carpeta MaskD con el mismo nombre que el original
241
+ #cv2.imwrite("MaskD" + file, img_out)
242
+ #cv2.imwrite(os.path.join("MaskD", file, img_out))
243
+ filename = os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/MaskD", file)
244
+ cv2.imwrite(filename, img_out)
245
+
246
+ # Iterar a través de los archivos de imagen en la carpeta MaskD
247
+ if smooth > 1:
248
+ for imagen in os.listdir(carpeta):
249
+ if imagen.endswith(".jpg") or imagen.endswith(".png") or imagen.endswith(".jpeg"):
250
+ # Leer la imagen
251
+ img = cv2.imread(os.path.join(carpeta, imagen))
252
+ # Aplicar el filtro
253
+ img = cv2.GaussianBlur(img, (blur_kernel,blur_kernel),0)
254
+ # Guardar la imagen con el mismo nombre
255
+ cv2.imwrite(os.path.join(carpeta, imagen), img)
256
+
257
+
258
+ # INICIO DEL BATCH Obtener el nombre del archivo en MaskD sin ninguna extensión
259
+ # Agregar una variable de contador de bucles
260
+ loop_count = 0
261
+
262
+ # Agregar un bucle while para ejecutar el código en bucle infinito
263
+ while True:
264
+
265
+ mask_files = sorted(os.listdir(maskD))
266
+ if not mask_files:
267
+ print(f"No frames left")
268
+ # Eliminar las carpetas Source, MaskS y MaskD si no hay más archivos para procesar
269
+ shutil.rmtree(maskD)
270
+ shutil.rmtree(maskS)
271
+ shutil.rmtree(source)
272
+ break
273
+
274
+ extra_mod = fine_blur
275
+
276
+ mask = mask_files[0]
277
+ maskname = os.path.splitext(mask)[0]
278
+
279
+ maskp_path = os.path.join(maskD, mask)
280
+
281
+ img = cv2.imread(maskp_path, cv2.IMREAD_GRAYSCALE) # leer la imagen en escala de grises
282
+ n_white_pix = np.sum(img == 255) # contar los píxeles que son iguales a 255 (blanco)
283
+ total_pix = img.size # obtener el número total de píxeles en la imagen
284
+ percentage = (n_white_pix / total_pix) * 100 # calcular el porcentaje de píxeles blancos
285
+ percentage = round(percentage, 1) # redondear el porcentaje a 1 decimal
286
+
287
+ # calcular la variable extra
288
+ extra = 100 - percentage # restar el porcentaje a 100
289
+ extra = extra / 3 # dividir el resultado por 3
290
+ extra = math.ceil(extra) # redondear hacia arriba al entero más cercano
291
+ if extra % 2 == 0: # verificar si el número es par
292
+ extra = extra + 1 # sumarle 1 para hacerlo impar
293
+
294
+ # Dynamic Blur
295
+ imgb = cv2.imread(maskp_path) # leer la imagen con opencv
296
+ img_blur = cv2.GaussianBlur(imgb, (extra,extra),0)
297
+
298
+ # guardar la imagen modificada con el mismo nombre y ruta
299
+ cv2.imwrite(maskp_path, img_blur)
300
+
301
+ # Obtener la ruta de la imagen en la subcarpeta de output que tiene el mismo nombre que la imagen en MaskD
302
+ output_files = [f for f in os.listdir(ruta_salida) if os.path.splitext(f)[0] == maskname]
303
+ if not output_files:
304
+ print(f"No se encontró en {ruta_salida} una imagen con el mismo nombre que {maskname}.")
305
+ exit(1)
306
+
307
+ output_file = os.path.join(ruta_salida, output_files[0])
308
+
309
+ # Aplicar el comando magick composite con las opciones deseadas
310
+ composite_command = f"magick composite -compose CopyOpacity {os.path.join(maskD, mask)} {output_file} {os.path.join(maskS, 'result.png')}"
311
+ os.system(composite_command)
312
+
313
+ # Obtener el nombre del archivo en output sin ninguna extensión
314
+ name = os.path.splitext(os.path.basename(output_file))[0]
315
+
316
+ # Renombrar el archivo result.png con el nombre del archivo en output y la extensión .png
317
+ os.rename(os.path.join(maskS, 'result.png'), os.path.join(maskS, f"{name}.png"))
318
+
319
+ #Guardar el directorio actual en una variable
320
+ original_dir = os.getcwd()
321
+
322
+ #Cambiar al directorio de la carpeta MaskS
323
+ os.chdir(maskS)
324
+
325
+ #Iterar a través de los archivos de imagen en la carpeta MaskS
326
+ for imagen in sorted(os.listdir(".")):
327
+ # Obtener el nombre de la imagen sin la extensión
328
+ nombre, extension = os.path.splitext(imagen)
329
+ # Obtener solo el número de la imagen
330
+ numero = ''.join(filter(str.isdigit, nombre))
331
+ # Definir el nombre de la siguiente imagen
332
+ siguiente = f"{int(numero)+1:0{len(numero)}}{extension}"
333
+ # Renombrar la imagen
334
+ os.rename(imagen, siguiente)
335
+
336
+ # Volver al directorio original
337
+ os.chdir(original_dir)
338
+
339
+ # Establecer un valor predeterminado para disolución
340
+ if frame_refresh_frequency < 1:
341
+ dissolve = percentage
342
+ else:
343
+ dissolve = 100 if loop_count % frame_refresh_frequency != 0 else refresh_strength
344
+
345
+
346
+ # Obtener el nombre del archivo en MaskS sin la extensión
347
+ maskS_files = [f for f in os.listdir(maskS) if os.path.isfile(os.path.join(maskS, f)) and f.endswith('.png')]
348
+ if maskS_files:
349
+ filename = os.path.splitext(maskS_files[0])[0]
350
+ else:
351
+ print(f"No se encontraron archivos de imagen en la carpeta '{maskS}'")
352
+ filename = ''[0]
353
+
354
+ # Salir del bucle si no hay más imágenes que procesar
355
+ if not filename:
356
+ break
357
+
358
+ # Obtener la extensión del archivo en Gen con el mismo nombre
359
+ gen_files = [f for f in os.listdir(ruta_entrada_2) if os.path.isfile(os.path.join(ruta_entrada_2, f)) and f.startswith(filename)]
360
+ if gen_files:
361
+ ext = os.path.splitext(gen_files[0])[1]
362
+ else:
363
+ print(f"No se encontró ningún archivo con el nombre '{filename}' en la carpeta '{ruta_entrada_2}'")
364
+ ext = ''
365
+
366
+ # Componer la imagen de MaskS y Gen con disolución (si está definido) y guardarla en la carpeta de salida
367
+ os.system(f"magick composite {'-dissolve ' + str(dissolve) + '%' if dissolve is not None else ''} {maskS}/{filename}.png {ruta_entrada_2}/{filename}{ext} {ruta_salida}/{filename}{ext}")
368
+
369
+ denoise_loop = inter_denoise_speed
370
+ kernel1 = inter_denoise
371
+ kernel2 = inter_denoise_size
372
+
373
+ # Demo plus bilateral
374
+ if loop_count % denoise_loop == 0:
375
+ # listar archivos en la carpeta de salida
376
+ archivos = os.listdir(ruta_salida)
377
+ # obtener el último archivo
378
+ ultimo_archivo = os.path.join(ruta_salida, archivos[-1])
379
+ # cargar imagen con opencv
380
+ imagen = cv2.imread(ultimo_archivo)
381
+ # aplicar filtro bilateral
382
+ imagen_filtrada = cv2.bilateralFilter(imagen, kernel1, kernel2, kernel2)
383
+ # sobreescribir el original
384
+ cv2.imwrite(ultimo_archivo, imagen_filtrada)
385
+
386
+ # Obtener el nombre del archivo más bajo en la carpeta MaskD
387
+ maskd_files = [f for f in os.listdir(maskD) if os.path.isfile(os.path.join(maskD, f)) and f.startswith('')]
388
+ if maskd_files:
389
+ maskd_file = os.path.join(maskD, sorted(maskd_files)[0])
390
+ os.remove(maskd_file)
391
+
392
+ # Obtener el nombre del archivo más bajo en la carpeta MaskS
393
+ masks_files = [f for f in os.listdir(maskS) if os.path.isfile(os.path.join(maskS, f)) and f.startswith('')]
394
+ if masks_files:
395
+ masks_file = os.path.join(maskS, sorted(masks_files)[0])
396
+ os.remove(masks_file)
397
+
398
+ # Aumentar el contador de bucles
399
+ loop_count += 1
400
+
401
+ def dyndef(ruta_entrada_3, ruta_salida_1, ddf_strength):
402
+ if ddf_strength <= 0: # Condición 1: strength debe ser mayor a 0
403
+ return
404
+ imgs = []
405
+ files = sorted(os.listdir(ruta_entrada_3))
406
+
407
+ for file in files:
408
+ img = cv2.imread(os.path.join(ruta_entrada_3, file))
409
+ imgs.append(img)
410
+
411
+ for idx in range(len(imgs)-1, 0, -1):
412
+ current_img = imgs[idx]
413
+ prev_img = imgs[idx-1]
414
+ alpha = ddf_strength
415
+
416
+ current_img = cv2.addWeighted(current_img, alpha, prev_img, 1-alpha, 0)
417
+ imgs[idx] = current_img
418
+
419
+ if not os.path.exists(ruta_salida_1):
420
+ os.makedirs(ruta_salida_1)
421
+
422
+ output_path = os.path.join(ruta_salida_1, files[idx]) # Usa el mismo nombre que el original
423
+ cv2.imwrite(output_path, current_img)
424
+
425
+ # Copia el primer archivo de los originales al finalizar el proceso
426
+ shutil.copy(os.path.join(ruta_entrada_3, files[0]), os.path.join(ruta_salida_1, files[0]))
427
+
428
+
429
+
430
+ def overlay_images(image1_path, image2_path, over_strength):
431
+
432
+ opacity = over_strength
433
+
434
+ # Abrir las imágenes
435
+ image1 = Image.open(image1_path).convert('RGBA')
436
+ image2 = Image.open(image2_path).convert('RGBA')
437
+
438
+ # Alinear el tamaño de las imágenes
439
+ if image1.size != image2.size:
440
+ image2 = image2.resize(image1.size)
441
+
442
+ # Convertir las imágenes en matrices NumPy
443
+ np_image1 = np.array(image1).astype(np.float64) / 255.0
444
+ np_image2 = np.array(image2).astype(np.float64) / 255.0
445
+
446
+ # Aplicar el método de fusión "overlay" a las imágenes
447
+ def basic(target, blend, opacity):
448
+ return target * opacity + blend * (1-opacity)
449
+
450
+ def blender(func):
451
+ def blend(target, blend, opacity=1, *args):
452
+ res = func(target, blend, *args)
453
+ res = basic(res, blend, opacity)
454
+ return np.clip(res, 0, 1)
455
+ return blend
456
+
457
+ class Blend:
458
+ @classmethod
459
+ def method(cls, name):
460
+ return getattr(cls, name)
461
+
462
+ normal = basic
463
+
464
+ @staticmethod
465
+ @blender
466
+ def overlay(target, blend, *args):
467
+ return (target>0.5) * (1-(2-2*target)*(1-blend)) +\
468
+ (target<=0.5) * (2*target*blend)
469
+
470
+ blended_image = Blend.overlay(np_image1, np_image2, opacity)
471
+
472
+ # Convertir la matriz de vuelta a una imagen PIL
473
+ blended_image = Image.fromarray((blended_image * 255).astype(np.uint8), 'RGBA').convert('RGB')
474
+
475
+ # Guardar la imagen resultante
476
+ return blended_image
477
+
478
+ def overlay_images2(image1_path, image2_path, fuse_strength):
479
+
480
+ opacity = fuse_strength
481
+
482
+ try:
483
+ image1 = Image.open(image1_path).convert('RGBA')
484
+ image2 = Image.open(image2_path).convert('RGBA')
485
+ except:
486
+ print("No more frames to fuse.")
487
+ return
488
+
489
+ # Alinear el tamaño de las imágenes
490
+ if image1.size != image2.size:
491
+ image1 = image1.resize(image2.size)
492
+
493
+ # Convertir las imágenes en matrices NumPy
494
+ np_image1 = np.array(image1).astype(np.float64) / 255.0
495
+ np_image2 = np.array(image2).astype(np.float64) / 255.0
496
+
497
+ # Aplicar el método de fusión "overlay" a las imágenes
498
+ def basic(target, blend, opacity):
499
+ return target * opacity + blend * (1-opacity)
500
+
501
+ def blender(func):
502
+ def blend(target, blend, opacity=1, *args):
503
+ res = func(target, blend, *args)
504
+ res = basic(res, blend, opacity)
505
+ return np.clip(res, 0, 1)
506
+ return blend
507
+
508
+ class Blend:
509
+ @classmethod
510
+ def method(cls, name):
511
+ return getattr(cls, name)
512
+
513
+ normal = basic
514
+
515
+ @staticmethod
516
+ @blender
517
+ def overlay(target, blend, *args):
518
+ return (target>0.5) * (1-(2-2*target)*(1-blend)) +\
519
+ (target<=0.5) * (2*target*blend)
520
+
521
+ blended_image = Blend.overlay(np_image1, np_image2, opacity)
522
+
523
+ # Convertir la matriz de vuelta a una imagen PIL
524
+ blended_image = Image.fromarray((blended_image * 255).astype(np.uint8), 'RGBA').convert('RGB')
525
+
526
+ # Guardar la imagen resultante
527
+ return blended_image
528
+
529
+ def overlay_run(ruta_entrada_3, ruta_salida_1, ddf_strength, over_strength):
530
+ if over_strength <= 0: # Condición 1: strength debe ser mayor a 0
531
+ return
532
+
533
+ # Si ddf_strength y/o over_strength son mayores a 0, utilizar ruta_salida_1 en lugar de ruta_entrada_3
534
+ if ddf_strength > 0:
535
+ ruta_entrada_3 = ruta_salida_1
536
+
537
+ if not os.path.exists("overtemp"):
538
+ os.makedirs("overtemp")
539
+
540
+ if not os.path.exists(ruta_salida_1):
541
+ os.makedirs(ruta_salida_1)
542
+
543
+ gen_path = ruta_entrada_3
544
+ images = sorted(os.listdir(gen_path))
545
+ image1_path = os.path.join(gen_path, images[0])
546
+ image2_path = os.path.join(gen_path, images[1])
547
+
548
+
549
+ fused_image = overlay_images(image1_path, image2_path, over_strength)
550
+ fuseover_path = "overtemp"
551
+ filename = os.path.basename(image1_path)
552
+ fused_image.save(os.path.join(fuseover_path, filename))
553
+
554
+
555
+ # Obtener una lista de todos los archivos en la carpeta "Gen"
556
+ gen_files = sorted(os.listdir(ruta_entrada_3))
557
+
558
+ for i in range(len(gen_files) - 1):
559
+ image1_path = os.path.join(ruta_entrada_3, gen_files[i])
560
+ image2_path = os.path.join(ruta_entrada_3, gen_files[i+1])
561
+ blended_image = overlay_images(image1_path, image2_path, over_strength)
562
+ blended_image.save(os.path.join("overtemp", gen_files[i+1]))
563
+
564
+
565
+ # Definimos la ruta de la carpeta "overtemp"
566
+ ruta_overtemp = "overtemp"
567
+
568
+ # Movemos todos los archivos de la carpeta "overtemp" a la carpeta "ruta_salida"
569
+ for archivo in os.listdir(ruta_overtemp):
570
+ origen = os.path.join(ruta_overtemp, archivo)
571
+ destino = os.path.join(ruta_salida_1, archivo)
572
+ shutil.move(origen, destino)
573
+
574
+ # Ajustar contraste y brillo para cada imagen en la carpeta de entrada
575
+ if over_strength >= 0.4:
576
+ for nombre_archivo in os.listdir(ruta_salida_1):
577
+ # Cargar imagen
578
+ ruta_archivo = os.path.join(ruta_salida_1, nombre_archivo)
579
+ img = cv2.imread(ruta_archivo)
580
+
581
+ # Ajustar contraste y brillo
582
+ alpha = 1 # Factor de contraste (mayor que 1 para aumentar el contraste)
583
+ beta = 10 # Valor de brillo (entero positivo para aumentar el brillo)
584
+ img_contrast = cv2.convertScaleAbs(img, alpha=alpha, beta=beta)
585
+
586
+ # Guardar imagen resultante en la carpeta de salida
587
+ ruta_salida = os.path.join(ruta_salida_1, nombre_archivo)
588
+ cv2.imwrite(ruta_salida, img_contrast)
589
+
590
+ def over_fuse(ruta_entrada_4, ruta_entrada_5, ruta_salida_2, fuse_strength):
591
+ # Obtener una lista de todos los archivos en la carpeta "Gen"
592
+ gen_files = os.listdir(ruta_entrada_4)
593
+
594
+ # Ordenar la lista de archivos alfabéticamente
595
+ gen_files.sort()
596
+
597
+ # Obtener una lista de todos los archivos en la carpeta "Source"
598
+ source_files = os.listdir(ruta_entrada_5)
599
+
600
+ # Ordenar la lista de archivos alfabéticamente
601
+ source_files.sort()
602
+
603
+ if not os.path.exists(ruta_salida_2):
604
+ os.makedirs(ruta_salida_2)
605
+
606
+ for i in range(len(gen_files)):
607
+ image1_path = os.path.join(ruta_entrada_4, gen_files[i])
608
+ image2_path = os.path.join(ruta_entrada_5, source_files[i])
609
+ blended_image = overlay_images2(image1_path, image2_path, fuse_strength)
610
+ try:
611
+ blended_image.save(os.path.join(ruta_salida_2, gen_files[i]))
612
+ except Exception as e:
613
+ print("Error al guardar la imagen:", str(e))
614
+ print("No more frames to fuse")
615
+ break
616
+
617
+
618
+ def norm(ruta_entrada_3, ruta_salida_1, ddf_strength, over_strength, norm_strength):
619
+ if norm_strength <= 0: # Condición 1: Norm_strength debe ser mayor a 0
620
+ return
621
+
622
+ # Si ddf_strength y/o over_strength son mayores a 0, utilizar ruta_salida_1 en lugar de ruta_entrada_3
623
+ if ddf_strength > 0 or over_strength > 0:
624
+ ruta_entrada_3 = ruta_salida_1
625
+
626
+ # Crear la carpeta GenOverNorm si no existe
627
+ if not os.path.exists("normtemp"):
628
+ os.makedirs("normtemp")
629
+
630
+ if not os.path.exists(ruta_salida_1):
631
+ os.makedirs(ruta_salida_1)
632
+
633
+ # Obtener una lista de todas las imágenes en la carpeta FuseOver
634
+ img_list = os.listdir(ruta_entrada_3)
635
+ img_list.sort() # Ordenar la lista en orden ascendente
636
+
637
+ # Iterar a través de las imágenes
638
+ for i in range(len(img_list)-1):
639
+ # Cargar las dos imágenes a fusionar
640
+ img1 = cv2.imread(os.path.join(ruta_entrada_3, img_list[i]))
641
+ img2 = cv2.imread(os.path.join(ruta_entrada_3, img_list[i+1]))
642
+
643
+ # Calcular la luminosidad promedio de cada imagen
644
+ avg1 = np.mean(cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY))
645
+ avg2 = np.mean(cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY))
646
+
647
+ # Calcular los pesos para cada imagen
648
+ weight1 = avg1 / (avg1 + avg2)
649
+ weight2 = avg2 / (avg1 + avg2)
650
+
651
+ # Fusionar las imágenes utilizando los pesos
652
+ result = cv2.addWeighted(img1, weight1, img2, weight2, 0)
653
+
654
+ # Guardar la imagen resultante en la carpeta GenOverNorm con el mismo nombre que la imagen original
655
+ cv2.imwrite(os.path.join("normtemp", img_list[i+1]), result)
656
+
657
+ # Copiar la primera imagen en la carpeta GenOverNorm para mantener la secuencia completa
658
+ img0 = cv2.imread(os.path.join(ruta_entrada_3, img_list[0]))
659
+ cv2.imwrite(os.path.join("normtemp", img_list[0]), img0)
660
+
661
+ # Definimos la ruta de la carpeta "overtemp"
662
+ ruta_overtemp = "normtemp"
663
+
664
+ # Movemos todos los archivos de la carpeta "overtemp" a la carpeta "ruta_salida"
665
+ for archivo in os.listdir(ruta_overtemp):
666
+ origen = os.path.join(ruta_overtemp, archivo)
667
+ destino = os.path.join(ruta_salida_1, archivo)
668
+ shutil.move(origen, destino)
669
+
670
+ def deflickers(ruta_entrada_3, ruta_salida_1, ddf_strength, over_strength, norm_strength):
671
+ dyndef(ruta_entrada_3, ruta_salida_1, ddf_strength)
672
+ overlay_run(ruta_entrada_3, ruta_salida_1, ddf_strength, over_strength)
673
+ norm(ruta_entrada_3, ruta_salida_1, ddf_strength, over_strength, norm_strength)
674
+
675
+ def extract_video(ruta_entrada_6, ruta_salida_3, fps_count):
676
+
677
+ # Ruta del archivo de video
678
+ filename = ruta_entrada_6
679
+
680
+ # Directorio donde se guardarán los frames extraídos
681
+ output_dir = ruta_salida_3
682
+
683
+ # Abrir el archivo de video
684
+ cap = cv2.VideoCapture(filename)
685
+
686
+ # Obtener los FPS originales del video
687
+ fps = cap.get(cv2.CAP_PROP_FPS)
688
+
689
+ # Si fps_count es 0, utilizar los FPS originales
690
+ if fps_count == 0:
691
+ fps_count = fps
692
+
693
+ # Calcular el tiempo entre cada frame a extraer en milisegundos
694
+ frame_time = int(round(1000 / fps_count))
695
+
696
+ # Crear el directorio de salida si no existe
697
+ if not os.path.exists(output_dir):
698
+ os.makedirs(output_dir)
699
+
700
+ # Inicializar el contador de frames
701
+ frame_count = 0
702
+
703
+ # Inicializar el tiempo del último frame extraído
704
+ last_frame_time = 0
705
+
706
+ # Iterar sobre los frames del video
707
+ while True:
708
+ # Leer el siguiente frame
709
+ ret, frame = cap.read()
710
+
711
+ # Si no se pudo leer un frame, salir del loop
712
+ if not ret:
713
+ break
714
+
715
+ # Calcular el tiempo actual del frame en milisegundos
716
+ current_frame_time = int(round(cap.get(cv2.CAP_PROP_POS_MSEC)))
717
+
718
+ # Si todavía no ha pasado suficiente tiempo desde el último frame extraído, saltar al siguiente frame
719
+ if current_frame_time - last_frame_time < frame_time:
720
+ continue
721
+
722
+ # Incrementar el contador de frames
723
+ frame_count += 1
724
+
725
+ # Construir el nombre del archivo de salida
726
+ output_filename = os.path.join(output_dir, 'frame_{:04d}.jpeg'.format(frame_count))
727
+
728
+ # Guardar el frame como una imagen
729
+ cv2.imwrite(output_filename, frame)
730
+
731
+ # Actualizar el tiempo del último frame extraído
732
+ last_frame_time = current_frame_time
733
+
734
+ # Cerrar el archivo de video
735
+ cap.release()
736
+
737
+ # Mostrar información sobre el proceso finalizado
738
+ print("Extracted {} frames.".format(frame_count))
739
+
740
+ def test_dfi(ruta_entrada_1, ruta_entrada_2, denoise_blur, dfi_strength, dfi_deghost, test_mode, smooth):
741
+
742
+
743
+ maskD = os.path.join(os.getcwd(), 'extensions', 'Abysz-LAB-Ext', 'scripts', 'Run', 'MaskDT')
744
+ #maskS = os.path.join(os.getcwd(), 'extensions', 'Abysz-LAB-Ext', 'scripts', 'Run', 'MaskST')
745
+ #output = os.path.join(os.getcwd(), 'extensions', 'Abysz-lab', 'scripts', 'Run', 'Output')
746
+ source = os.path.join(os.getcwd(), 'extensions', 'Abysz-LAB-Ext', 'scripts', 'Run', 'SourceT')
747
+ #gen = os.path.join(os.getcwd(), 'extensions', 'Abysz-LAB-Ext', 'scripts', 'Run', 'GenT')
748
+
749
+ # verificar si las carpetas existen y eliminarlas si es el caso
750
+ if os.path.exists(source): # verificar si existe la carpeta source
751
+ shutil.rmtree(source) # eliminar la carpeta source y su contenido
752
+ #if os.path.exists(maskS): # verificar si existe la carpeta maskS
753
+ # shutil.rmtree(maskS) # eliminar la carpeta maskS y su contenido
754
+ if os.path.exists(maskD): # verificar si existe la carpeta maskS
755
+ shutil.rmtree(maskD) # eliminar la carpeta maskS y su contenido
756
+ #if os.path.exists(gen): # verificar si existe la carpeta maskS
757
+ # shutil.rmtree(gen) # eliminar la carpeta maskS y su contenido
758
+ #if os.path.exists(output): # verificar si existe la carpeta maskS
759
+ # shutil.rmtree(output) # eliminar la carpeta maskS y su contenido
760
+
761
+
762
+ os.makedirs(source, exist_ok=True)
763
+ #os.makedirs(maskS, exist_ok=True)
764
+ #os.makedirs(output, exist_ok=True)
765
+ os.makedirs(maskD, exist_ok=True)
766
+ #os.makedirs(gen, exist_ok=True)
767
+
768
+
769
+ def copy_images(ruta_entrada_1, ruta_entrada_2):
770
+ if test_mode == 0:
771
+ # Usar el primer formato
772
+ indices = [10, 11, 20, 21, 30, 31] # Los índices de las imágenes que quieres copiar
773
+ else:
774
+ test_frames = test_mode
775
+ # Usar el segundo formato
776
+ indices = list(range(test_frames)) # Los primeros 30 índices
777
+ # Copiar todas las imágenes de la carpeta ruta_entrada_1 a la carpeta Source
778
+ for i in indices:
779
+ file = os.listdir(ruta_entrada_1)[i] # Obtener el nombre del archivo en el índice i
780
+ if file.endswith(".jpg") or file.endswith(".jpeg") or file.endswith(".png"): # Verificar que sea una imagen
781
+ img = Image.open(os.path.join(ruta_entrada_1, file)) # Abrir la imagen
782
+ rgb_img = img.convert('RGB') # Convertir a RGB
783
+ rgb_img.save(os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/SourceT", "{:04d}.jpeg".format(i+1)), "jpeg", quality=100) # Guardar la imagen en la carpeta destino
784
+
785
+ # Llamar a la función copy_images para copiar las imágenes
786
+ copy_images(ruta_entrada_1, ruta_entrada_2)
787
+
788
+ # Carpeta donde se encuentran las imágenes de Gen
789
+ def sresize(ruta_entrada_2):
790
+ gen_folder = ruta_entrada_2
791
+
792
+ # Carpeta donde se encuentran las imágenes de FULL
793
+ full_folder = "./extensions/Abysz-LAB-Ext/scripts/Run/SourceT"
794
+
795
+ # Obtener la primera imagen en la carpeta Gen
796
+ gen_images = os.listdir(gen_folder)
797
+ gen_image_path = os.path.join(gen_folder, gen_images[0])
798
+ gen_image = cv2.imread(gen_image_path)
799
+ gen_height, gen_width = gen_image.shape[:2]
800
+ gen_aspect_ratio = gen_width / gen_height
801
+
802
+ # Recorrer todas las imágenes en la carpeta FULL
803
+ for image_name in os.listdir(full_folder):
804
+ image_path = os.path.join(full_folder, image_name)
805
+ image = cv2.imread(image_path)
806
+ height, width = image.shape[:2]
807
+ aspect_ratio = width / height
808
+
809
+ if aspect_ratio != gen_aspect_ratio:
810
+ if aspect_ratio > gen_aspect_ratio:
811
+ # La imagen es más ancha que la imagen de Gen
812
+ crop_width = int(height * gen_aspect_ratio)
813
+ x = int((width - crop_width) / 2)
814
+ image = image[:, x:x+crop_width]
815
+ else:
816
+ # La imagen es más alta que la imagen de Gen
817
+ crop_height = int(width / gen_aspect_ratio)
818
+ y = int((height - crop_height) / 2)
819
+ image = image[y:y+crop_height, :]
820
+
821
+ # Redimensionar la imagen de FULL a la resolución de la imagen de Gen
822
+ image = cv2.resize(image, (gen_width, gen_height))
823
+
824
+ # Guardar la imagen redimensionada en la carpeta FULL
825
+ cv2.imwrite(os.path.join(full_folder, image_name), image)
826
+
827
+ sresize(ruta_entrada_2)
828
+
829
+ def denoise(denoise_blur):
830
+ if denoise_blur < 1:
831
+ return
832
+
833
+ denoise_kernel = denoise_blur
834
+ # Obtener la lista de nombres de archivos en la carpeta source
835
+ files = os.listdir("./extensions/Abysz-LAB-Ext/scripts/Run/SourceT")
836
+
837
+ # Crear una carpeta destino si no existe
838
+ #if not os.path.exists("dest"):
839
+ # os.mkdir("dest")
840
+
841
+ # Recorrer cada archivo en la carpeta source
842
+ for file in files:
843
+ # Leer la imagen con opencv
844
+ img = cv2.imread(os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/SourceT", file))
845
+
846
+ # Aplicar el filtro de blur con un tamaño de kernel 5x5
847
+ dst = cv2.bilateralFilter(img, denoise_kernel, 31, 31)
848
+
849
+ # Eliminar el archivo original
850
+ #os.remove(os.path.join("SourceDFI", file))
851
+
852
+ # Guardar la imagen resultante en la carpeta destino con el mismo nombre
853
+ cv2.imwrite(os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/SourceT", file), dst)
854
+
855
+ denoise(denoise_blur)
856
+
857
+
858
+ # Definir la carpeta donde están los archivos
859
+ carpeta = './extensions/Abysz-LAB-Ext/scripts/Run/SourceT'
860
+
861
+ # Crear la carpeta MaskD si no existe
862
+ os.makedirs('./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT', exist_ok=True)
863
+
864
+ # Inicializar número de imagen
865
+ numero = 1
866
+
867
+ umbral_size = dfi_strength
868
+ # Iterar a través de los archivos de imagen en la carpeta Source
869
+ for filename in sorted(os.listdir(carpeta)):
870
+ if test_mode == 0:
871
+ # Cargar la imagen actual en escala de grises
872
+ actual = cv2.imread(os.path.join(carpeta, filename), cv2.IMREAD_GRAYSCALE)
873
+
874
+ # Si el número de imagen es par, procesar la imagen actual y la anterior
875
+ if numero % 2 == 0:
876
+ diff = cv2.absdiff(anterior, actual)
877
+
878
+ # Aplicar un umbral y guardar la imagen resultante en la carpeta MaskD con el mismo nombre que el original. Menos es más.
879
+ umbral = umbral_size
880
+ umbralizado = cv2.threshold(diff, umbral, 255, cv2.THRESH_BINARY_INV)[1] # Invertir los colores
881
+ cv2.imwrite(os.path.join('./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT', filename), umbralizado)
882
+
883
+ # Guardar la imagen actual como anterior para el siguiente ciclo
884
+ anterior = actual
885
+
886
+ # Incrementar el número de imagen para alternar entre pares e impares
887
+ numero += 1
888
+
889
+ else:
890
+
891
+ # Iterar a través de los archivos de imagen en la carpeta Source
892
+ for filename in sorted(os.listdir(carpeta)):
893
+ # Cargar la imagen actual y la siguiente en escala de grises
894
+
895
+ if numero > 1:
896
+ siguiente = cv2.imread(os.path.join(carpeta, filename), cv2.IMREAD_GRAYSCALE)
897
+ diff = cv2.absdiff(anterior, siguiente)
898
+
899
+ # Aplicar un umbral y guardar la imagen resultante en la carpeta MaskD. Menos es más.
900
+ umbral = umbral_size
901
+ umbralizado = cv2.threshold(diff, umbral, 255, cv2.THRESH_BINARY_INV)[1] # Invertir los colores
902
+ cv2.imwrite(os.path.join('./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT', filename), umbralizado)
903
+
904
+ anterior = cv2.imread(os.path.join(carpeta, filename), cv2.IMREAD_GRAYSCALE)
905
+ numero += 1
906
+
907
+
908
+
909
+ # Obtener la lista de los nombres de los archivos en la carpeta MaskD
910
+ files = os.listdir("./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT")
911
+ # Definir la carpeta donde están los archivos
912
+ carpeta = "./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT"
913
+ blur_kernel = smooth
914
+
915
+ # Iterar sobre cada archivo
916
+ for file in files:
917
+ if dfi_deghost == 0:
918
+
919
+ continue
920
+ # Leer la imagen de la carpeta MaskD
921
+ #img = cv2.imread("MaskD" + file)
922
+ img = cv2.imread(os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT", file))
923
+
924
+ # Invertir la imagen usando la función bitwise_not()
925
+ img_inv = cv2.bitwise_not(img)
926
+
927
+ kernel_size = dfi_deghost
928
+
929
+ # Dilatar la imagen usando la función dilate()
930
+ kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (kernel_size, kernel_size)) # Puedes cambiar el tamaño y la forma del kernel según tus preferencias
931
+ img_dil = cv2.dilate(img_inv, kernel)
932
+
933
+ # Volver a invertir la imagen usando la función bitwise_not()
934
+ img_out = cv2.bitwise_not(img_dil)
935
+
936
+ # Sobrescribir la imagen en la carpeta MaskD con el mismo nombre que el original
937
+ #cv2.imwrite("MaskD" + file, img_out)
938
+ #cv2.imwrite(os.path.join("MaskD", file, img_out))
939
+ filename = os.path.join("./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT", file)
940
+ cv2.imwrite(filename, img_out)
941
+
942
+ # Iterar a través de los archivos de imagen en la carpeta MaskD
943
+ if smooth > 1:
944
+ for imagen in os.listdir(carpeta):
945
+ if imagen.endswith(".jpg") or imagen.endswith(".png") or imagen.endswith(".jpeg"):
946
+ # Leer la imagen
947
+ img = cv2.imread(os.path.join(carpeta, imagen))
948
+ # Aplicar el filtro
949
+ img = cv2.GaussianBlur(img, (blur_kernel,blur_kernel),0)
950
+ # Guardar la imagen con el mismo nombre
951
+ cv2.imwrite(os.path.join(carpeta, imagen), img)
952
+
953
+ if test_mode == 0:
954
+ nombres = os.listdir("./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT") # obtener los nombres de los archivos en la carpeta MaskDT
955
+ ancho = 0 # variable para guardar el ancho acumulado de las ventanas
956
+ for i, nombre in enumerate(nombres): # recorrer cada nombre de archivo
957
+ imagen = cv2.imread("./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT/" + nombre) # leer la imagen correspondiente
958
+ h, w, c = imagen.shape # obtener el alto, ancho y canales de la imagen
959
+ aspect_ratio = w / h # calcular la relación de aspecto
960
+ cv2.namedWindow(nombre, cv2.WINDOW_NORMAL) # crear una ventana con el nombre del archivo
961
+ ancho_ventana = 630 # definir un ancho fijo para las ventanas
962
+ alto_ventana = int(ancho_ventana / aspect_ratio) # calcular el alto proporcional al ancho y a la relación de aspecto
963
+ cv2.resizeWindow(nombre, ancho_ventana, alto_ventana) # cambiar el tamaño de la ventana según las dimensiones calculadas
964
+ cv2.moveWindow(nombre, ancho, 0) # mover la ventana a una posición horizontal según el ancho acumulado
965
+ cv2.imshow(nombre, imagen) # mostrar la imagen en la ventana
966
+ cv2.setWindowProperty(nombre,cv2.WND_PROP_TOPMOST,1.0) # poner la ventana en primer plano con un valor double
967
+ ancho += ancho_ventana + 10 # aumentar el ancho acumulado en 410 píxeles para la siguiente ventana
968
+ cv2.waitKey(4000) # esperar a que se presione una tecla para cerrar todas las ventanas
969
+ cv2.destroyAllWindows() # cerrar todas las ventanas abiertas por OpenCV
970
+
971
+
972
+ else:
973
+
974
+ # Directorio de entrada de imágenes
975
+ ruta_entrada = "./extensions/Abysz-LAB-Ext/scripts/Run/MaskDT"
976
+
977
+ # Obtener el tamaño de la primera imagen en el directorio de entrada
978
+ img_path = os.path.join(ruta_entrada, os.listdir(ruta_entrada)[0])
979
+ img = cv2.imread(img_path)
980
+ img_size = (img.shape[1], img.shape[0])
981
+
982
+ # Fps del video
983
+ fps = 10
984
+
985
+ # Crear objeto VideoWriter
986
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
987
+ video_salida = cv2.VideoWriter('output.mp4', fourcc, fps, img_size)
988
+
989
+ # Crear ventana con nombre "video"
990
+ cv2.namedWindow("video")
991
+
992
+ # Establecer la ventana en primer plano
993
+ cv2.setWindowProperty("video", cv2.WND_PROP_TOPMOST,1.0)
994
+
995
+ # Crear ventana de visualización
996
+ # Leer imágenes en el directorio y agregarlas al video de salida
997
+ for file in sorted(os.listdir(ruta_entrada)):
998
+ if file.endswith(".jpg") or file.endswith(".jpeg") or file.endswith(".png"): # Verificar que sea una imagen
999
+ img = cv2.imread(os.path.join(ruta_entrada, file)) # Leer la imagen
1000
+ #img_resized = cv2.resize(img, img_size) # Redimensionar la imagen
1001
+ video_salida.write(img) # Agregar la imagen al video
1002
+
1003
+ # Liberar el objeto VideoWriter
1004
+ video_salida.release()
1005
+
1006
+ # Crear objeto VideoCapture para leer el archivo de video recién creado
1007
+ video_capture = cv2.VideoCapture('output.mp4')
1008
+
1009
+ # Crear ventana con nombre "video"
1010
+ cv2.namedWindow("video")
1011
+
1012
+ # Establecer la ventana en primer plano
1013
+ cv2.setWindowProperty("video", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_NORMAL)
1014
+
1015
+ # Mostrar el video en una ventana
1016
+ while True:
1017
+ ret, img = video_capture.read()
1018
+ if ret:
1019
+ cv2.imshow('video', img)
1020
+ cv2.waitKey(int(1000/fps))
1021
+ else:
1022
+ break
1023
+
1024
+ # Liberar el objeto VideoCapture y cerrar la ventana de visualización
1025
+ video_capture.release()
1026
+ cv2.destroyAllWindows()
1027
+
1028
+ def dfi_video(ruta_salida):
1029
+ # Directorio de entrada de imágenes
1030
+ ruta_entrada = ruta_salida
1031
+
1032
+ # Obtener el tamaño de la primera imagen en el directorio de entrada
1033
+ img_path = os.path.join(ruta_entrada, os.listdir(ruta_entrada)[0])
1034
+ img = cv2.imread(img_path)
1035
+ img_size = (img.shape[1], img.shape[0])
1036
+
1037
+ # Fps del video
1038
+ fps = 15
1039
+
1040
+ # Crear objeto VideoWriter
1041
+ fourcc = cv2.VideoWriter_fourcc(*'mp4v')
1042
+ video_salida = cv2.VideoWriter('output.mp4', fourcc, fps, img_size)
1043
+
1044
+ # Crear ventana con nombre "video"
1045
+ cv2.namedWindow("video")
1046
+
1047
+ # Establecer la ventana en primer plano
1048
+ cv2.setWindowProperty("video", cv2.WND_PROP_TOPMOST,1.0)
1049
+
1050
+ # Crear ventana de visualización
1051
+ # Leer imágenes en el directorio y agregarlas al video de salida
1052
+ for file in sorted(os.listdir(ruta_entrada)):
1053
+ if file.endswith(".jpg") or file.endswith(".jpeg") or file.endswith(".png"): # Verificar que sea una imagen
1054
+ img = cv2.imread(os.path.join(ruta_entrada, file)) # Leer la imagen
1055
+ #img_resized = cv2.resize(img, img_size) # Redimensionar la imagen
1056
+ video_salida.write(img) # Agregar la imagen al video
1057
+
1058
+ # Liberar el objeto VideoWriter
1059
+ video_salida.release()
1060
+
1061
+ # Crear objeto VideoCapture para leer el archivo de video recién creado
1062
+ video_capture = cv2.VideoCapture('output.mp4')
1063
+
1064
+ # Crear ventana con nombre "video"
1065
+ cv2.namedWindow("video")
1066
+
1067
+ # Establecer la ventana en primer plano
1068
+ cv2.setWindowProperty("video", cv2.WND_PROP_FULLSCREEN, cv2.WINDOW_NORMAL)
1069
+
1070
+ # Mostrar el video en una ventana
1071
+ while True:
1072
+ ret, img = video_capture.read()
1073
+ if ret:
1074
+ cv2.imshow('video', img)
1075
+ cv2.waitKey(int(1000/fps))
1076
+ else:
1077
+ break
1078
+
1079
+ # Liberar el objeto VideoCapture y cerrar la ventana de visualización
1080
+ video_capture.release()
1081
+ cv2.destroyAllWindows()
1082
+
1083
+
1084
+ def add_tab():
1085
+ print('LAB')
1086
+ with gr.Blocks(analytics_enabled=False) as demo:
1087
+ with gr.Tabs():
1088
+ with gr.Tab("Main"):
1089
+ with gr.Row():
1090
+ with gr.Column():
1091
+ with gr.Column():
1092
+ gr.Markdown("# Abysz LAB 0.1.9 Temporal coherence tools")
1093
+ gr.Markdown("## DFI Render")
1094
+ with gr.Column():
1095
+ ruta_entrada_1 = gr.Textbox(label="Original/reference frames folder", placeholder="RAW frames, or generated ones. (Read the strategies in the guide)")
1096
+ ruta_entrada_2 = gr.Textbox(label="Generated frames folder", placeholder="The frames of AI generated video")
1097
+ ruta_salida = gr.Textbox(label="Output folder", placeholder="Remember that each generation overwrites previous frames in the same folder.")
1098
+ with gr.Accordion("Info", open=False):
1099
+ gr.Markdown("This process detects static areas between frames (white) and moving areas (black). Use preview map and you will understand this. Basically, it will force the white areas to stay the same on the next frame.")
1100
+ gr.Markdown("DFI Tolerance adjusts how stiff this process is. Higher = more rigidity + corruption. Lower = more flexible, less corruption, but allows more flick. ")
1101
+ gr.Markdown("As complement, you can clean the map, to reduce detail and noise, or fatten/expand the areas detected by DFI. It is better that you use preview many times to experience how it works.")
1102
+ gr.Markdown("### IMPORTANT: The general algorithm is optimized to maintain a balance between deflicking and corruption, so that it is easier to use StableDiffusion at low denoising to reconstruct lost detail while preserving the stability gained.")
1103
+ with gr.Row():
1104
+ denoise_blur = gr.Slider(minimum=0, maximum=30, value=0, step=1, label="Map Denoise")
1105
+ dfi_strength = gr.Slider(minimum=0.5, maximum=20, value=5, step=0.5, label="DFI Tolerance")
1106
+ dfi_deghost = gr.Slider(minimum=0, maximum=50, value=0, step=1, label="DFI Expand")
1107
+ with gr.Accordion("Info", open=False):
1108
+ gr.Markdown("Here you can preview examples of the motion map for those parameters. It is useful, for example, to adjust denoise if you see that it detects unnecessary graininess. Keep in mind that what you see represents movement between two frames.")
1109
+ gr.Markdown("A good balance point is to throttle DFI until you find just a few things in areas that should be static. If you force it to be TOO clean, it will mostly increase the overall corruption.")
1110
+ with gr.Row():
1111
+ dfi_test = gr.Button(value="Preview DFI Map")
1112
+ test_mode = gr.Slider(minimum=0, maximum=100, value=0, step=1, label="Preview amount. 0 = Quick shot")
1113
+ with gr.Accordion("Advanced", open=False):
1114
+ with gr.Accordion("Info", open=False):
1115
+ gr.Markdown("**Inter Denoise:** Reduces render pixelation generated by corruption. However, be careful. It's resource hungry, and might remove excess detail. Not recommended to change size or FPD, but to use Stable Diffusion to remove the pixelation later.")
1116
+ gr.Markdown("**Inter Blur:** Fine tunes the dynamic blur algorithm for DFI map. Lower = Stronger blur effects. Between 2-3 recommended.")
1117
+ gr.Markdown("**Corruption Refresh:** To reduce the distortion generated by the process, you can recover original information every X number of frames. Lower number = faster refresh.")
1118
+ gr.Markdown("**Corruption Preserve:** Here you decide how much corruption keep in each corruption refresh. Low values will recover more of the original frame, with its changes and flickering, in exchange for reducing corruption. You must find the balance that works best for your goal.")
1119
+ gr.Markdown("**Smooth:** This smoothes the edges of the interpolated areas. Low values are currently recommended until the algorithm is updated.")
1120
+ with gr.Row():
1121
+ inter_denoise = gr.Slider(minimum=1, maximum=25, value=9, step=1, label="Inter Denoise")
1122
+ inter_denoise_size = gr.Slider(minimum=1, maximum=25, value=9, step=2, label="Inter Denoise Size")
1123
+ inter_denoise_speed = gr.Slider(minimum=1, maximum=15, value=3, step=1, label="Inter Denoise FPD")
1124
+ fine_blur = gr.Slider(minimum=1, maximum=5, value=3, step=0.1, label="Inter Blur")
1125
+ gr.Markdown("### The new dynamic algorithm will handle these parameters. Activate them only for manual control.")
1126
+ with gr.Row():
1127
+ frame_refresh_frequency = gr.Slider(minimum=0, maximum=30, value=0, step=1, label="Corruption Refresh (Lower = Faster)")
1128
+ refresh_strength = gr.Slider(minimum=0, maximum=100, value=0, step=5, label="Corruption Preserve")
1129
+ smooth = gr.Slider(minimum=1, maximum=99, value=1, step=2, label="Smooth")
1130
+ with gr.Row():
1131
+ frames_limit = gr.Number(label="Frames to render. 0=ALL")
1132
+ run_button = gr.Button(value="Run DFI", variant="primary")
1133
+ output_placeholder = gr.Textbox(label="Status", placeholder="STAND BY...")
1134
+ video_dfi = gr.Button(value="Show output folder video")
1135
+ with gr.Column():
1136
+ with gr.Column():
1137
+ gr.Markdown("# |")
1138
+ gr.Markdown("## Deflickers Playground")
1139
+ with gr.Column():
1140
+ ruta_entrada_3 = gr.Textbox(label="Frames folder", placeholder="Frames to process")
1141
+ ruta_salida_1 = gr.Textbox(label="Output folder", placeholder="Processed frames")
1142
+ with gr.Accordion("Info", open=False):
1143
+ gr.Markdown("I made this series of deflickers based on the standard that Vegas Pro includes. You can use them together or separately. Be careful when mixing them.")
1144
+ gr.Markdown("**Blend:** Blends a percentage between frames. This can soften transitions and highlights. 50 is half of each frame. 80 or 20 are recommended values.")
1145
+ gr.Markdown("**Overlay:** Use the overlay image blending mode. Note that it works particularly good at mid-high values, wich will modify the overall contrast. You will have to decide what works for you.")
1146
+ gr.Markdown("**Normalize:** Calculates the average between frames to merge them. It may be more practical if you don't have a specific Blend deflicker value in mind.")
1147
+ ddf_strength = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="BLEND (0=Off)")
1148
+ over_strength = gr.Slider(minimum=0, maximum=1, value=0, step=0.01, label="OVERLAY (0=Off)")
1149
+ norm_strength = gr.Slider(minimum=0, maximum=1, value=0, step=1, label="NORMALIZE (0=Off))")
1150
+ dfk_button = gr.Button(value="Deflickers")
1151
+ with gr.Tab("LAB Tools"):
1152
+ with gr.Column():
1153
+ gr.Markdown("## Style Fuse")
1154
+ with gr.Accordion("Info", open=False):
1155
+ gr.Markdown("With this you can merge two sets of frames with overlay technique. For example, you can take a style video that is just lights and/or colors, and overlay it on top of another video.")
1156
+ gr.Markdown("The resulting video will be useful for use in Img2Img Batch and that the AI render preserves these added color and lighting details, along with the details of the original video.")
1157
+ with gr.Row():
1158
+ ruta_entrada_4 = gr.Textbox(label="Style frames", placeholder="Style to fuse")
1159
+ ruta_entrada_5 = gr.Textbox(label="Video frames", placeholder="Frames to process")
1160
+ with gr.Row():
1161
+ ruta_salida_2 = gr.Textbox(label="Output folder", placeholder="Processed frames")
1162
+ fuse_strength = gr.Slider(minimum=0.1, maximum=1, value=0.5, step=0.01, label="Fuse Strength")
1163
+ fuse_button = gr.Button(value="Fuse")
1164
+ gr.Markdown("## Video extract")
1165
+ with gr.Row():
1166
+ ruta_entrada_6 = gr.Textbox(label="Video path", placeholder="Remember to use same fps as generated video for DFI")
1167
+ ruta_salida_3 = gr.Textbox(label="Output folder", placeholder="Processed frames")
1168
+ with gr.Row():
1169
+ fps_count = gr.Number(label="Fps. 0=Original")
1170
+ vidextract_button = gr.Button(value="Extract")
1171
+ output_placeholder2 = gr.Textbox(label="Status", placeholder="STAND BY...")
1172
+ with gr.Tab("Guide"):
1173
+ with gr.Column():
1174
+ gr.Markdown("# What DFI does?")
1175
+ with gr.Accordion("Info", open=False):
1176
+ gr.Markdown("DFI processing analyzes the motion of the original video, and attempts to force that information into the generated video. Demo on https://github.com/AbyszOne/Abysz-LAB-Ext")
1177
+ gr.Markdown("In short, this will reduce flicker in areas of the video that don't need to change, but SD does. For example, for a man smoking, leaning against a pole, it will detect that the pole is static, and will try to prevent it from changing as much as possible.")
1178
+ gr.Markdown("This is an aggressive process that requires a lot of control for each context. Read the recommended strategies.")
1179
+ gr.Markdown("Although Video to Video is the most efficient way, a DFI One Shot method is under experimental development as well.")
1180
+ gr.Markdown("# Usage strategies")
1181
+ with gr.Accordion("Info", open=False):
1182
+ gr.Markdown("If you get enough understanding of the tool, you can achieve a much more stable and clean enough rendering. However, this is quite demanding.")
1183
+ gr.Markdown("Instead, a much friendlier and faster way to use this tool is as an intermediate step. For this, you can allow a reasonable degree of corruption in exchange for more general stability. ")
1184
+ gr.Markdown("You can then clean up the corruption and recover details with a second step in Stable Diffusion at low denoising (0.2-0.4), using the same parameters and seed.")
1185
+ gr.Markdown("In this way, the final result will have the stability that we have gained, maintaining final detail. If you find a balanced workflow, you will get something at least much more coherent and stable than the raw AI render.")
1186
+ gr.Markdown("**OPTIONAL:** Although not ideal, you can use the same AI generated video as the source, instead of the RAW. The trick is to use DFI and denoise to wash out map details so that you reduce low/mid changes between frames. If you only need a soft deflick, it is a valid option.")
1187
+
1188
+ dt_inputs=[ruta_entrada_1, ruta_entrada_2, denoise_blur, dfi_strength, dfi_deghost, test_mode, smooth]
1189
+ run_inputs=[ruta_entrada_1, ruta_entrada_2, ruta_salida, denoise_blur, dfi_strength, dfi_deghost, test_mode, inter_denoise, inter_denoise_size, inter_denoise_speed, fine_blur, frame_refresh_frequency, refresh_strength, smooth, frames_limit]
1190
+ dfk_inputs=[ruta_entrada_3, ruta_salida_1, ddf_strength, over_strength, norm_strength]
1191
+ fuse_inputs=[ruta_entrada_4, ruta_entrada_5, ruta_salida_2, fuse_strength]
1192
+ ve_inputs=[ruta_entrada_6, ruta_salida_3, fps_count]
1193
+
1194
+ dfi_test.click(fn=test_dfi, inputs=dt_inputs, outputs=output_placeholder)
1195
+ run_button.click(fn=main, inputs=run_inputs, outputs=output_placeholder)
1196
+ video_dfi.click(fn=dfi_video, inputs=ruta_salida, outputs=output_placeholder)
1197
+ dfk_button.click(fn=deflickers, inputs=dfk_inputs, outputs=output_placeholder)
1198
+ fuse_button.click(fn=over_fuse, inputs=fuse_inputs, outputs=output_placeholder2)
1199
+ vidextract_button.click(fn=extract_video, inputs=ve_inputs, outputs=output_placeholder2)
1200
+ return [(demo, "Abysz LAB", "demo")]
1201
+
1202
+ script_callbacks.on_ui_tabs(add_tab)
Abysz-LAB-Ext/scripts/__pycache__/Abysz_Lab.cpython-310.pyc ADDED
Binary file (28.3 kB). View file
 
Auto-Photoshop-StableDiffusion-Plugin/scripts/__pycache__/main.cpython-310.pyc CHANGED
Binary files a/Auto-Photoshop-StableDiffusion-Plugin/scripts/__pycache__/main.cpython-310.pyc and b/Auto-Photoshop-StableDiffusion-Plugin/scripts/__pycache__/main.cpython-310.pyc differ
 
Auto-Photoshop-StableDiffusion-Plugin/scripts/__pycache__/test.cpython-310.pyc CHANGED
Binary files a/Auto-Photoshop-StableDiffusion-Plugin/scripts/__pycache__/test.cpython-310.pyc and b/Auto-Photoshop-StableDiffusion-Plugin/scripts/__pycache__/test.cpython-310.pyc differ
 
Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/img2imgapi.cpython-310.pyc CHANGED
Binary files a/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/img2imgapi.cpython-310.pyc and b/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/img2imgapi.cpython-310.pyc differ
 
Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/metadata_to_json.cpython-310.pyc CHANGED
Binary files a/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/metadata_to_json.cpython-310.pyc and b/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/metadata_to_json.cpython-310.pyc differ
 
Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/prompt_shortcut.cpython-310.pyc CHANGED
Binary files a/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/prompt_shortcut.cpython-310.pyc and b/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/prompt_shortcut.cpython-310.pyc differ
 
Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/search.cpython-310.pyc CHANGED
Binary files a/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/search.cpython-310.pyc and b/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/search.cpython-310.pyc differ
 
Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/serverHelper.cpython-310.pyc CHANGED
Binary files a/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/serverHelper.cpython-310.pyc and b/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/serverHelper.cpython-310.pyc differ
 
Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/serverMain.cpython-310.pyc CHANGED
Binary files a/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/serverMain.cpython-310.pyc and b/Auto-Photoshop-StableDiffusion-Plugin/server/python_server/__pycache__/serverMain.cpython-310.pyc differ
 
SD-CN-Animation/.gitignore ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ __pycache__/
2
+ out/
3
+ videos/
4
+ FP_Res/
5
+ result.mp4
6
+ *.pth
SD-CN-Animation/FloweR/__pycache__/model.cpython-310.pyc ADDED
Binary file (3.84 kB). View file
 
SD-CN-Animation/FloweR/model.py ADDED
@@ -0,0 +1,191 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.functional as F
4
+
5
+ # Define the model
6
+ class FloweR(nn.Module):
7
+ def __init__(self, input_size = (384, 384), window_size = 4):
8
+ super(FloweR, self).__init__()
9
+
10
+ self.input_size = input_size
11
+ self.window_size = window_size
12
+
13
+ # 2 channels for optical flow
14
+ # 1 channel for occlusion mask
15
+ # 3 channels for next frame prediction
16
+ self.out_channels = 6
17
+
18
+
19
+ #INPUT: 384 x 384 x 4 * 3
20
+
21
+ ### DOWNSCALE ###
22
+ self.conv_block_1 = nn.Sequential(
23
+ nn.Conv2d(3 * self.window_size, 128, kernel_size=3, stride=1, padding='same'),
24
+ nn.ReLU(),
25
+ ) # 384 x 384 x 128
26
+
27
+ self.conv_block_2 = nn.Sequential(
28
+ nn.AvgPool2d(2),
29
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
30
+ nn.ReLU(),
31
+ ) # 192 x 192 x 128
32
+
33
+ self.conv_block_3 = nn.Sequential(
34
+ nn.AvgPool2d(2),
35
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
36
+ nn.ReLU(),
37
+ ) # 96 x 96 x 128
38
+
39
+ self.conv_block_4 = nn.Sequential(
40
+ nn.AvgPool2d(2),
41
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
42
+ nn.ReLU(),
43
+ ) # 48 x 48 x 128
44
+
45
+ self.conv_block_5 = nn.Sequential(
46
+ nn.AvgPool2d(2),
47
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
48
+ nn.ReLU(),
49
+ ) # 24 x 24 x 128
50
+
51
+ self.conv_block_6 = nn.Sequential(
52
+ nn.AvgPool2d(2),
53
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
54
+ nn.ReLU(),
55
+ ) # 12 x 12 x 128
56
+
57
+ self.conv_block_7 = nn.Sequential(
58
+ nn.AvgPool2d(2),
59
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
60
+ nn.ReLU(),
61
+ ) # 6 x 6 x 128
62
+
63
+ self.conv_block_8 = nn.Sequential(
64
+ nn.AvgPool2d(2),
65
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
66
+ nn.ReLU(),
67
+ ) # 3 x 3 x 128 - 9 input tokens
68
+
69
+ ### Transformer part ###
70
+ # To be done
71
+
72
+ ### UPSCALE ###
73
+ self.conv_block_9 = nn.Sequential(
74
+ nn.Upsample(scale_factor=2),
75
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
76
+ nn.ReLU(),
77
+ ) # 6 x 6 x 128
78
+
79
+ self.conv_block_10 = nn.Sequential(
80
+ nn.Upsample(scale_factor=2),
81
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
82
+ nn.ReLU(),
83
+ ) # 12 x 12 x 128
84
+
85
+ self.conv_block_11 = nn.Sequential(
86
+ nn.Upsample(scale_factor=2),
87
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
88
+ nn.ReLU(),
89
+ ) # 24 x 24 x 128
90
+
91
+ self.conv_block_12 = nn.Sequential(
92
+ nn.Upsample(scale_factor=2),
93
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
94
+ nn.ReLU(),
95
+ ) # 48 x 48 x 128
96
+
97
+ self.conv_block_13 = nn.Sequential(
98
+ nn.Upsample(scale_factor=2),
99
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
100
+ nn.ReLU(),
101
+ ) # 96 x 96 x 128
102
+
103
+ self.conv_block_14 = nn.Sequential(
104
+ nn.Upsample(scale_factor=2),
105
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
106
+ nn.ReLU(),
107
+ ) # 192 x 192 x 128
108
+
109
+ self.conv_block_15 = nn.Sequential(
110
+ nn.Upsample(scale_factor=2),
111
+ nn.Conv2d(128, 128, kernel_size=3, stride=1, padding='same'),
112
+ nn.ReLU(),
113
+ ) # 384 x 384 x 128
114
+
115
+ self.conv_block_16 = nn.Conv2d(128, self.out_channels, kernel_size=3, stride=1, padding='same')
116
+
117
+ def forward(self, input_frames):
118
+
119
+ if input_frames.size(1) != self.window_size:
120
+ raise Exception(f'Shape of the input is not compatable. There should be exactly {self.window_size} frames in an input video.')
121
+
122
+ h, w = self.input_size
123
+ # batch, frames, height, width, colors
124
+ input_frames_permuted = input_frames.permute((0, 1, 4, 2, 3))
125
+ # batch, frames, colors, height, width
126
+
127
+ in_x = input_frames_permuted.reshape(-1, self.window_size * 3, self.input_size[0], self.input_size[1])
128
+
129
+ ### DOWNSCALE ###
130
+ block_1_out = self.conv_block_1(in_x) # 384 x 384 x 128
131
+ block_2_out = self.conv_block_2(block_1_out) # 192 x 192 x 128
132
+ block_3_out = self.conv_block_3(block_2_out) # 96 x 96 x 128
133
+ block_4_out = self.conv_block_4(block_3_out) # 48 x 48 x 128
134
+ block_5_out = self.conv_block_5(block_4_out) # 24 x 24 x 128
135
+ block_6_out = self.conv_block_6(block_5_out) # 12 x 12 x 128
136
+ block_7_out = self.conv_block_7(block_6_out) # 6 x 6 x 128
137
+ block_8_out = self.conv_block_8(block_7_out) # 3 x 3 x 128
138
+
139
+ ### UPSCALE ###
140
+ block_9_out = block_7_out + self.conv_block_9(block_8_out) # 6 x 6 x 128
141
+ block_10_out = block_6_out + self.conv_block_10(block_9_out) # 12 x 12 x 128
142
+ block_11_out = block_5_out + self.conv_block_11(block_10_out) # 24 x 24 x 128
143
+ block_12_out = block_4_out + self.conv_block_12(block_11_out) # 48 x 48 x 128
144
+ block_13_out = block_3_out + self.conv_block_13(block_12_out) # 96 x 96 x 128
145
+ block_14_out = block_2_out + self.conv_block_14(block_13_out) # 192 x 192 x 128
146
+ block_15_out = block_1_out + self.conv_block_15(block_14_out) # 384 x 384 x 128
147
+
148
+ block_16_out = self.conv_block_16(block_15_out) # 384 x 384 x (2 + 1 + 3)
149
+ out = block_16_out.reshape(-1, self.out_channels, self.input_size[0], self.input_size[1])
150
+
151
+ ### for future model training ###
152
+ device = out.get_device()
153
+
154
+ pred_flow = out[:,:2,:,:] * 255 # (-255, 255)
155
+ pred_occl = (out[:,2:3,:,:] + 1) / 2 # [0, 1]
156
+ pred_next = out[:,3:6,:,:]
157
+
158
+ # Generate sampling grids
159
+
160
+ # Create grid to upsample input
161
+ '''
162
+ d = torch.linspace(-1, 1, 8)
163
+ meshx, meshy = torch.meshgrid((d, d))
164
+ grid = torch.stack((meshy, meshx), 2)
165
+ grid = grid.unsqueeze(0) '''
166
+
167
+ grid_y, grid_x = torch.meshgrid(torch.arange(0, h), torch.arange(0, w))
168
+ flow_grid = torch.stack((grid_x, grid_y), dim=0).float()
169
+ flow_grid = flow_grid.unsqueeze(0).to(device=device)
170
+ flow_grid = flow_grid + pred_flow
171
+
172
+ flow_grid[:, 0, :, :] = 2 * flow_grid[:, 0, :, :] / (w - 1) - 1
173
+ flow_grid[:, 1, :, :] = 2 * flow_grid[:, 1, :, :] / (h - 1) - 1
174
+ # batch, flow_chanels, height, width
175
+ flow_grid = flow_grid.permute(0, 2, 3, 1)
176
+ # batch, height, width, flow_chanels
177
+
178
+ previous_frame = input_frames_permuted[:, -1, :, :, :]
179
+ sampling_mode = "bilinear" if self.training else "nearest"
180
+ warped_frame = torch.nn.functional.grid_sample(previous_frame, flow_grid, mode=sampling_mode, padding_mode="reflection", align_corners=False)
181
+ alpha_mask = torch.clip(pred_occl * 10, 0, 1) * 0.04
182
+ pred_next = torch.clip(pred_next, -1, 1)
183
+ warped_frame = torch.clip(warped_frame, -1, 1)
184
+ next_frame = pred_next * alpha_mask + warped_frame * (1 - alpha_mask)
185
+
186
+ res = torch.cat((pred_flow / 255, pred_occl * 2 - 1, next_frame), dim=1)
187
+
188
+ # batch, channels, height, width
189
+ res = res.permute((0, 2, 3, 1))
190
+ # batch, height, width, channels
191
+ return res
SD-CN-Animation/LICENSE ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ License
2
+
3
+ Copyright (c) 2023 Alexey Borsky
4
+
5
+ The Software is subject to the following conditions:
6
+
7
+ The above copyright notice and this permission notice shall be included in all
8
+ copies or substantial portions of the Software.
9
+
10
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
11
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
12
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
13
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
14
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
15
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
16
+ SOFTWARE.
17
+
18
+ This repository can only be used for personal/research/non-commercial purposes.
19
+ However, for commercial requests, please contact us directly at
20
+ [email protected]. This restriction applies only to the code itself, all
21
+ derivative works made using this repository (i.e. images and video) can be
22
+ used for any purposes without restrictions.
SD-CN-Animation/RAFT/LICENSE ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 3-Clause License
2
+
3
+ Copyright (c) 2020, princeton-vl
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are met:
8
+
9
+ * Redistributions of source code must retain the above copyright notice, this
10
+ list of conditions and the following disclaimer.
11
+
12
+ * Redistributions in binary form must reproduce the above copyright notice,
13
+ this list of conditions and the following disclaimer in the documentation
14
+ and/or other materials provided with the distribution.
15
+
16
+ * Neither the name of the copyright holder nor the names of its
17
+ contributors may be used to endorse or promote products derived from
18
+ this software without specific prior written permission.
19
+
20
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
SD-CN-Animation/RAFT/__pycache__/corr.cpython-310.pyc ADDED
Binary file (3.08 kB). View file
 
SD-CN-Animation/RAFT/__pycache__/extractor.cpython-310.pyc ADDED
Binary file (5.79 kB). View file
 
SD-CN-Animation/RAFT/__pycache__/raft.cpython-310.pyc ADDED
Binary file (4.22 kB). View file
 
SD-CN-Animation/RAFT/__pycache__/update.cpython-310.pyc ADDED
Binary file (5.64 kB). View file
 
SD-CN-Animation/RAFT/corr.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ from RAFT.utils.utils import bilinear_sampler, coords_grid
4
+
5
+ try:
6
+ import alt_cuda_corr
7
+ except:
8
+ # alt_cuda_corr is not compiled
9
+ pass
10
+
11
+
12
+ class CorrBlock:
13
+ def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
14
+ self.num_levels = num_levels
15
+ self.radius = radius
16
+ self.corr_pyramid = []
17
+
18
+ # all pairs correlation
19
+ corr = CorrBlock.corr(fmap1, fmap2)
20
+
21
+ batch, h1, w1, dim, h2, w2 = corr.shape
22
+ corr = corr.reshape(batch*h1*w1, dim, h2, w2)
23
+
24
+ self.corr_pyramid.append(corr)
25
+ for i in range(self.num_levels-1):
26
+ corr = F.avg_pool2d(corr, 2, stride=2)
27
+ self.corr_pyramid.append(corr)
28
+
29
+ def __call__(self, coords):
30
+ r = self.radius
31
+ coords = coords.permute(0, 2, 3, 1)
32
+ batch, h1, w1, _ = coords.shape
33
+
34
+ out_pyramid = []
35
+ for i in range(self.num_levels):
36
+ corr = self.corr_pyramid[i]
37
+ dx = torch.linspace(-r, r, 2*r+1, device=coords.device)
38
+ dy = torch.linspace(-r, r, 2*r+1, device=coords.device)
39
+ delta = torch.stack(torch.meshgrid(dy, dx), axis=-1)
40
+
41
+ centroid_lvl = coords.reshape(batch*h1*w1, 1, 1, 2) / 2**i
42
+ delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2)
43
+ coords_lvl = centroid_lvl + delta_lvl
44
+
45
+ corr = bilinear_sampler(corr, coords_lvl)
46
+ corr = corr.view(batch, h1, w1, -1)
47
+ out_pyramid.append(corr)
48
+
49
+ out = torch.cat(out_pyramid, dim=-1)
50
+ return out.permute(0, 3, 1, 2).contiguous().float()
51
+
52
+ @staticmethod
53
+ def corr(fmap1, fmap2):
54
+ batch, dim, ht, wd = fmap1.shape
55
+ fmap1 = fmap1.view(batch, dim, ht*wd)
56
+ fmap2 = fmap2.view(batch, dim, ht*wd)
57
+
58
+ corr = torch.matmul(fmap1.transpose(1,2), fmap2)
59
+ corr = corr.view(batch, ht, wd, 1, ht, wd)
60
+ return corr / torch.sqrt(torch.tensor(dim).float())
61
+
62
+
63
+ class AlternateCorrBlock:
64
+ def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
65
+ self.num_levels = num_levels
66
+ self.radius = radius
67
+
68
+ self.pyramid = [(fmap1, fmap2)]
69
+ for i in range(self.num_levels):
70
+ fmap1 = F.avg_pool2d(fmap1, 2, stride=2)
71
+ fmap2 = F.avg_pool2d(fmap2, 2, stride=2)
72
+ self.pyramid.append((fmap1, fmap2))
73
+
74
+ def __call__(self, coords):
75
+ coords = coords.permute(0, 2, 3, 1)
76
+ B, H, W, _ = coords.shape
77
+ dim = self.pyramid[0][0].shape[1]
78
+
79
+ corr_list = []
80
+ for i in range(self.num_levels):
81
+ r = self.radius
82
+ fmap1_i = self.pyramid[0][0].permute(0, 2, 3, 1).contiguous()
83
+ fmap2_i = self.pyramid[i][1].permute(0, 2, 3, 1).contiguous()
84
+
85
+ coords_i = (coords / 2**i).reshape(B, 1, H, W, 2).contiguous()
86
+ corr, = alt_cuda_corr.forward(fmap1_i, fmap2_i, coords_i, r)
87
+ corr_list.append(corr.squeeze(1))
88
+
89
+ corr = torch.stack(corr_list, dim=1)
90
+ corr = corr.reshape(B, -1, H, W)
91
+ return corr / torch.sqrt(torch.tensor(dim).float())
SD-CN-Animation/RAFT/extractor.py ADDED
@@ -0,0 +1,267 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ class ResidualBlock(nn.Module):
7
+ def __init__(self, in_planes, planes, norm_fn='group', stride=1):
8
+ super(ResidualBlock, self).__init__()
9
+
10
+ self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
11
+ self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
12
+ self.relu = nn.ReLU(inplace=True)
13
+
14
+ num_groups = planes // 8
15
+
16
+ if norm_fn == 'group':
17
+ self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
18
+ self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
19
+ if not stride == 1:
20
+ self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
21
+
22
+ elif norm_fn == 'batch':
23
+ self.norm1 = nn.BatchNorm2d(planes)
24
+ self.norm2 = nn.BatchNorm2d(planes)
25
+ if not stride == 1:
26
+ self.norm3 = nn.BatchNorm2d(planes)
27
+
28
+ elif norm_fn == 'instance':
29
+ self.norm1 = nn.InstanceNorm2d(planes)
30
+ self.norm2 = nn.InstanceNorm2d(planes)
31
+ if not stride == 1:
32
+ self.norm3 = nn.InstanceNorm2d(planes)
33
+
34
+ elif norm_fn == 'none':
35
+ self.norm1 = nn.Sequential()
36
+ self.norm2 = nn.Sequential()
37
+ if not stride == 1:
38
+ self.norm3 = nn.Sequential()
39
+
40
+ if stride == 1:
41
+ self.downsample = None
42
+
43
+ else:
44
+ self.downsample = nn.Sequential(
45
+ nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
46
+
47
+
48
+ def forward(self, x):
49
+ y = x
50
+ y = self.relu(self.norm1(self.conv1(y)))
51
+ y = self.relu(self.norm2(self.conv2(y)))
52
+
53
+ if self.downsample is not None:
54
+ x = self.downsample(x)
55
+
56
+ return self.relu(x+y)
57
+
58
+
59
+
60
+ class BottleneckBlock(nn.Module):
61
+ def __init__(self, in_planes, planes, norm_fn='group', stride=1):
62
+ super(BottleneckBlock, self).__init__()
63
+
64
+ self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0)
65
+ self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride)
66
+ self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0)
67
+ self.relu = nn.ReLU(inplace=True)
68
+
69
+ num_groups = planes // 8
70
+
71
+ if norm_fn == 'group':
72
+ self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
73
+ self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
74
+ self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
75
+ if not stride == 1:
76
+ self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
77
+
78
+ elif norm_fn == 'batch':
79
+ self.norm1 = nn.BatchNorm2d(planes//4)
80
+ self.norm2 = nn.BatchNorm2d(planes//4)
81
+ self.norm3 = nn.BatchNorm2d(planes)
82
+ if not stride == 1:
83
+ self.norm4 = nn.BatchNorm2d(planes)
84
+
85
+ elif norm_fn == 'instance':
86
+ self.norm1 = nn.InstanceNorm2d(planes//4)
87
+ self.norm2 = nn.InstanceNorm2d(planes//4)
88
+ self.norm3 = nn.InstanceNorm2d(planes)
89
+ if not stride == 1:
90
+ self.norm4 = nn.InstanceNorm2d(planes)
91
+
92
+ elif norm_fn == 'none':
93
+ self.norm1 = nn.Sequential()
94
+ self.norm2 = nn.Sequential()
95
+ self.norm3 = nn.Sequential()
96
+ if not stride == 1:
97
+ self.norm4 = nn.Sequential()
98
+
99
+ if stride == 1:
100
+ self.downsample = None
101
+
102
+ else:
103
+ self.downsample = nn.Sequential(
104
+ nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4)
105
+
106
+
107
+ def forward(self, x):
108
+ y = x
109
+ y = self.relu(self.norm1(self.conv1(y)))
110
+ y = self.relu(self.norm2(self.conv2(y)))
111
+ y = self.relu(self.norm3(self.conv3(y)))
112
+
113
+ if self.downsample is not None:
114
+ x = self.downsample(x)
115
+
116
+ return self.relu(x+y)
117
+
118
+ class BasicEncoder(nn.Module):
119
+ def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
120
+ super(BasicEncoder, self).__init__()
121
+ self.norm_fn = norm_fn
122
+
123
+ if self.norm_fn == 'group':
124
+ self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
125
+
126
+ elif self.norm_fn == 'batch':
127
+ self.norm1 = nn.BatchNorm2d(64)
128
+
129
+ elif self.norm_fn == 'instance':
130
+ self.norm1 = nn.InstanceNorm2d(64)
131
+
132
+ elif self.norm_fn == 'none':
133
+ self.norm1 = nn.Sequential()
134
+
135
+ self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
136
+ self.relu1 = nn.ReLU(inplace=True)
137
+
138
+ self.in_planes = 64
139
+ self.layer1 = self._make_layer(64, stride=1)
140
+ self.layer2 = self._make_layer(96, stride=2)
141
+ self.layer3 = self._make_layer(128, stride=2)
142
+
143
+ # output convolution
144
+ self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1)
145
+
146
+ self.dropout = None
147
+ if dropout > 0:
148
+ self.dropout = nn.Dropout2d(p=dropout)
149
+
150
+ for m in self.modules():
151
+ if isinstance(m, nn.Conv2d):
152
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
153
+ elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
154
+ if m.weight is not None:
155
+ nn.init.constant_(m.weight, 1)
156
+ if m.bias is not None:
157
+ nn.init.constant_(m.bias, 0)
158
+
159
+ def _make_layer(self, dim, stride=1):
160
+ layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
161
+ layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
162
+ layers = (layer1, layer2)
163
+
164
+ self.in_planes = dim
165
+ return nn.Sequential(*layers)
166
+
167
+
168
+ def forward(self, x):
169
+
170
+ # if input is list, combine batch dimension
171
+ is_list = isinstance(x, tuple) or isinstance(x, list)
172
+ if is_list:
173
+ batch_dim = x[0].shape[0]
174
+ x = torch.cat(x, dim=0)
175
+
176
+ x = self.conv1(x)
177
+ x = self.norm1(x)
178
+ x = self.relu1(x)
179
+
180
+ x = self.layer1(x)
181
+ x = self.layer2(x)
182
+ x = self.layer3(x)
183
+
184
+ x = self.conv2(x)
185
+
186
+ if self.training and self.dropout is not None:
187
+ x = self.dropout(x)
188
+
189
+ if is_list:
190
+ x = torch.split(x, [batch_dim, batch_dim], dim=0)
191
+
192
+ return x
193
+
194
+
195
+ class SmallEncoder(nn.Module):
196
+ def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
197
+ super(SmallEncoder, self).__init__()
198
+ self.norm_fn = norm_fn
199
+
200
+ if self.norm_fn == 'group':
201
+ self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32)
202
+
203
+ elif self.norm_fn == 'batch':
204
+ self.norm1 = nn.BatchNorm2d(32)
205
+
206
+ elif self.norm_fn == 'instance':
207
+ self.norm1 = nn.InstanceNorm2d(32)
208
+
209
+ elif self.norm_fn == 'none':
210
+ self.norm1 = nn.Sequential()
211
+
212
+ self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3)
213
+ self.relu1 = nn.ReLU(inplace=True)
214
+
215
+ self.in_planes = 32
216
+ self.layer1 = self._make_layer(32, stride=1)
217
+ self.layer2 = self._make_layer(64, stride=2)
218
+ self.layer3 = self._make_layer(96, stride=2)
219
+
220
+ self.dropout = None
221
+ if dropout > 0:
222
+ self.dropout = nn.Dropout2d(p=dropout)
223
+
224
+ self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1)
225
+
226
+ for m in self.modules():
227
+ if isinstance(m, nn.Conv2d):
228
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
229
+ elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
230
+ if m.weight is not None:
231
+ nn.init.constant_(m.weight, 1)
232
+ if m.bias is not None:
233
+ nn.init.constant_(m.bias, 0)
234
+
235
+ def _make_layer(self, dim, stride=1):
236
+ layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride)
237
+ layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1)
238
+ layers = (layer1, layer2)
239
+
240
+ self.in_planes = dim
241
+ return nn.Sequential(*layers)
242
+
243
+
244
+ def forward(self, x):
245
+
246
+ # if input is list, combine batch dimension
247
+ is_list = isinstance(x, tuple) or isinstance(x, list)
248
+ if is_list:
249
+ batch_dim = x[0].shape[0]
250
+ x = torch.cat(x, dim=0)
251
+
252
+ x = self.conv1(x)
253
+ x = self.norm1(x)
254
+ x = self.relu1(x)
255
+
256
+ x = self.layer1(x)
257
+ x = self.layer2(x)
258
+ x = self.layer3(x)
259
+ x = self.conv2(x)
260
+
261
+ if self.training and self.dropout is not None:
262
+ x = self.dropout(x)
263
+
264
+ if is_list:
265
+ x = torch.split(x, [batch_dim, batch_dim], dim=0)
266
+
267
+ return x
SD-CN-Animation/RAFT/raft.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.nn.functional as F
5
+
6
+ from RAFT.update import BasicUpdateBlock, SmallUpdateBlock
7
+ from RAFT.extractor import BasicEncoder, SmallEncoder
8
+ from RAFT.corr import CorrBlock, AlternateCorrBlock
9
+ from RAFT.utils.utils import bilinear_sampler, coords_grid, upflow8
10
+
11
+ try:
12
+ autocast = torch.cuda.amp.autocast
13
+ except:
14
+ # dummy autocast for PyTorch < 1.6
15
+ class autocast:
16
+ def __init__(self, enabled):
17
+ pass
18
+ def __enter__(self):
19
+ pass
20
+ def __exit__(self, *args):
21
+ pass
22
+
23
+
24
+ class RAFT(nn.Module):
25
+ def __init__(self, args):
26
+ super(RAFT, self).__init__()
27
+ self.args = args
28
+
29
+ if args.small:
30
+ self.hidden_dim = hdim = 96
31
+ self.context_dim = cdim = 64
32
+ args.corr_levels = 4
33
+ args.corr_radius = 3
34
+
35
+ else:
36
+ self.hidden_dim = hdim = 128
37
+ self.context_dim = cdim = 128
38
+ args.corr_levels = 4
39
+ args.corr_radius = 4
40
+
41
+ if 'dropout' not in self.args:
42
+ self.args.dropout = 0
43
+
44
+ if 'alternate_corr' not in self.args:
45
+ self.args.alternate_corr = False
46
+
47
+ # feature network, context network, and update block
48
+ if args.small:
49
+ self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout)
50
+ self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout)
51
+ self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim)
52
+
53
+ else:
54
+ self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout)
55
+ self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout)
56
+ self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)
57
+
58
+ def freeze_bn(self):
59
+ for m in self.modules():
60
+ if isinstance(m, nn.BatchNorm2d):
61
+ m.eval()
62
+
63
+ def initialize_flow(self, img):
64
+ """ Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
65
+ N, C, H, W = img.shape
66
+ coords0 = coords_grid(N, H//8, W//8, device=img.device)
67
+ coords1 = coords_grid(N, H//8, W//8, device=img.device)
68
+
69
+ # optical flow computed as difference: flow = coords1 - coords0
70
+ return coords0, coords1
71
+
72
+ def upsample_flow(self, flow, mask):
73
+ """ Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
74
+ N, _, H, W = flow.shape
75
+ mask = mask.view(N, 1, 9, 8, 8, H, W)
76
+ mask = torch.softmax(mask, dim=2)
77
+
78
+ up_flow = F.unfold(8 * flow, [3,3], padding=1)
79
+ up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)
80
+
81
+ up_flow = torch.sum(mask * up_flow, dim=2)
82
+ up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
83
+ return up_flow.reshape(N, 2, 8*H, 8*W)
84
+
85
+
86
+ def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False):
87
+ """ Estimate optical flow between pair of frames """
88
+
89
+ image1 = 2 * (image1 / 255.0) - 1.0
90
+ image2 = 2 * (image2 / 255.0) - 1.0
91
+
92
+ image1 = image1.contiguous()
93
+ image2 = image2.contiguous()
94
+
95
+ hdim = self.hidden_dim
96
+ cdim = self.context_dim
97
+
98
+ # run the feature network
99
+ with autocast(enabled=self.args.mixed_precision):
100
+ fmap1, fmap2 = self.fnet([image1, image2])
101
+
102
+ fmap1 = fmap1.float()
103
+ fmap2 = fmap2.float()
104
+ if self.args.alternate_corr:
105
+ corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
106
+ else:
107
+ corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
108
+
109
+ # run the context network
110
+ with autocast(enabled=self.args.mixed_precision):
111
+ cnet = self.cnet(image1)
112
+ net, inp = torch.split(cnet, [hdim, cdim], dim=1)
113
+ net = torch.tanh(net)
114
+ inp = torch.relu(inp)
115
+
116
+ coords0, coords1 = self.initialize_flow(image1)
117
+
118
+ if flow_init is not None:
119
+ coords1 = coords1 + flow_init
120
+
121
+ flow_predictions = []
122
+ for itr in range(iters):
123
+ coords1 = coords1.detach()
124
+ corr = corr_fn(coords1) # index correlation volume
125
+
126
+ flow = coords1 - coords0
127
+ with autocast(enabled=self.args.mixed_precision):
128
+ net, up_mask, delta_flow = self.update_block(net, inp, corr, flow)
129
+
130
+ # F(t+1) = F(t) + \Delta(t)
131
+ coords1 = coords1 + delta_flow
132
+
133
+ # upsample predictions
134
+ if up_mask is None:
135
+ flow_up = upflow8(coords1 - coords0)
136
+ else:
137
+ flow_up = self.upsample_flow(coords1 - coords0, up_mask)
138
+
139
+ flow_predictions.append(flow_up)
140
+
141
+ if test_mode:
142
+ return coords1 - coords0, flow_up
143
+
144
+ return flow_predictions
SD-CN-Animation/RAFT/update.py ADDED
@@ -0,0 +1,139 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+
5
+
6
+ class FlowHead(nn.Module):
7
+ def __init__(self, input_dim=128, hidden_dim=256):
8
+ super(FlowHead, self).__init__()
9
+ self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
10
+ self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1)
11
+ self.relu = nn.ReLU(inplace=True)
12
+
13
+ def forward(self, x):
14
+ return self.conv2(self.relu(self.conv1(x)))
15
+
16
+ class ConvGRU(nn.Module):
17
+ def __init__(self, hidden_dim=128, input_dim=192+128):
18
+ super(ConvGRU, self).__init__()
19
+ self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
20
+ self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
21
+ self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
22
+
23
+ def forward(self, h, x):
24
+ hx = torch.cat([h, x], dim=1)
25
+
26
+ z = torch.sigmoid(self.convz(hx))
27
+ r = torch.sigmoid(self.convr(hx))
28
+ q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))
29
+
30
+ h = (1-z) * h + z * q
31
+ return h
32
+
33
+ class SepConvGRU(nn.Module):
34
+ def __init__(self, hidden_dim=128, input_dim=192+128):
35
+ super(SepConvGRU, self).__init__()
36
+ self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
37
+ self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
38
+ self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
39
+
40
+ self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
41
+ self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
42
+ self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
43
+
44
+
45
+ def forward(self, h, x):
46
+ # horizontal
47
+ hx = torch.cat([h, x], dim=1)
48
+ z = torch.sigmoid(self.convz1(hx))
49
+ r = torch.sigmoid(self.convr1(hx))
50
+ q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))
51
+ h = (1-z) * h + z * q
52
+
53
+ # vertical
54
+ hx = torch.cat([h, x], dim=1)
55
+ z = torch.sigmoid(self.convz2(hx))
56
+ r = torch.sigmoid(self.convr2(hx))
57
+ q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))
58
+ h = (1-z) * h + z * q
59
+
60
+ return h
61
+
62
+ class SmallMotionEncoder(nn.Module):
63
+ def __init__(self, args):
64
+ super(SmallMotionEncoder, self).__init__()
65
+ cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
66
+ self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0)
67
+ self.convf1 = nn.Conv2d(2, 64, 7, padding=3)
68
+ self.convf2 = nn.Conv2d(64, 32, 3, padding=1)
69
+ self.conv = nn.Conv2d(128, 80, 3, padding=1)
70
+
71
+ def forward(self, flow, corr):
72
+ cor = F.relu(self.convc1(corr))
73
+ flo = F.relu(self.convf1(flow))
74
+ flo = F.relu(self.convf2(flo))
75
+ cor_flo = torch.cat([cor, flo], dim=1)
76
+ out = F.relu(self.conv(cor_flo))
77
+ return torch.cat([out, flow], dim=1)
78
+
79
+ class BasicMotionEncoder(nn.Module):
80
+ def __init__(self, args):
81
+ super(BasicMotionEncoder, self).__init__()
82
+ cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
83
+ self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0)
84
+ self.convc2 = nn.Conv2d(256, 192, 3, padding=1)
85
+ self.convf1 = nn.Conv2d(2, 128, 7, padding=3)
86
+ self.convf2 = nn.Conv2d(128, 64, 3, padding=1)
87
+ self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1)
88
+
89
+ def forward(self, flow, corr):
90
+ cor = F.relu(self.convc1(corr))
91
+ cor = F.relu(self.convc2(cor))
92
+ flo = F.relu(self.convf1(flow))
93
+ flo = F.relu(self.convf2(flo))
94
+
95
+ cor_flo = torch.cat([cor, flo], dim=1)
96
+ out = F.relu(self.conv(cor_flo))
97
+ return torch.cat([out, flow], dim=1)
98
+
99
+ class SmallUpdateBlock(nn.Module):
100
+ def __init__(self, args, hidden_dim=96):
101
+ super(SmallUpdateBlock, self).__init__()
102
+ self.encoder = SmallMotionEncoder(args)
103
+ self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64)
104
+ self.flow_head = FlowHead(hidden_dim, hidden_dim=128)
105
+
106
+ def forward(self, net, inp, corr, flow):
107
+ motion_features = self.encoder(flow, corr)
108
+ inp = torch.cat([inp, motion_features], dim=1)
109
+ net = self.gru(net, inp)
110
+ delta_flow = self.flow_head(net)
111
+
112
+ return net, None, delta_flow
113
+
114
+ class BasicUpdateBlock(nn.Module):
115
+ def __init__(self, args, hidden_dim=128, input_dim=128):
116
+ super(BasicUpdateBlock, self).__init__()
117
+ self.args = args
118
+ self.encoder = BasicMotionEncoder(args)
119
+ self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim)
120
+ self.flow_head = FlowHead(hidden_dim, hidden_dim=256)
121
+
122
+ self.mask = nn.Sequential(
123
+ nn.Conv2d(128, 256, 3, padding=1),
124
+ nn.ReLU(inplace=True),
125
+ nn.Conv2d(256, 64*9, 1, padding=0))
126
+
127
+ def forward(self, net, inp, corr, flow, upsample=True):
128
+ motion_features = self.encoder(flow, corr)
129
+ inp = torch.cat([inp, motion_features], dim=1)
130
+
131
+ net = self.gru(net, inp)
132
+ delta_flow = self.flow_head(net)
133
+
134
+ # scale mask to balence gradients
135
+ mask = .25 * self.mask(net)
136
+ return net, mask, delta_flow
137
+
138
+
139
+
SD-CN-Animation/RAFT/utils/__init__.py ADDED
File without changes
SD-CN-Animation/RAFT/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (166 Bytes). View file
 
SD-CN-Animation/RAFT/utils/__pycache__/utils.cpython-310.pyc ADDED
Binary file (3.12 kB). View file
 
SD-CN-Animation/RAFT/utils/augmentor.py ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import random
3
+ import math
4
+ from PIL import Image
5
+
6
+ import cv2
7
+ cv2.setNumThreads(0)
8
+ cv2.ocl.setUseOpenCL(False)
9
+
10
+ import torch
11
+ from torchvision.transforms import ColorJitter
12
+ import torch.nn.functional as F
13
+
14
+
15
+ class FlowAugmentor:
16
+ def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True):
17
+
18
+ # spatial augmentation params
19
+ self.crop_size = crop_size
20
+ self.min_scale = min_scale
21
+ self.max_scale = max_scale
22
+ self.spatial_aug_prob = 0.8
23
+ self.stretch_prob = 0.8
24
+ self.max_stretch = 0.2
25
+
26
+ # flip augmentation params
27
+ self.do_flip = do_flip
28
+ self.h_flip_prob = 0.5
29
+ self.v_flip_prob = 0.1
30
+
31
+ # photometric augmentation params
32
+ self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5/3.14)
33
+ self.asymmetric_color_aug_prob = 0.2
34
+ self.eraser_aug_prob = 0.5
35
+
36
+ def color_transform(self, img1, img2):
37
+ """ Photometric augmentation """
38
+
39
+ # asymmetric
40
+ if np.random.rand() < self.asymmetric_color_aug_prob:
41
+ img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8)
42
+ img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8)
43
+
44
+ # symmetric
45
+ else:
46
+ image_stack = np.concatenate([img1, img2], axis=0)
47
+ image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
48
+ img1, img2 = np.split(image_stack, 2, axis=0)
49
+
50
+ return img1, img2
51
+
52
+ def eraser_transform(self, img1, img2, bounds=[50, 100]):
53
+ """ Occlusion augmentation """
54
+
55
+ ht, wd = img1.shape[:2]
56
+ if np.random.rand() < self.eraser_aug_prob:
57
+ mean_color = np.mean(img2.reshape(-1, 3), axis=0)
58
+ for _ in range(np.random.randint(1, 3)):
59
+ x0 = np.random.randint(0, wd)
60
+ y0 = np.random.randint(0, ht)
61
+ dx = np.random.randint(bounds[0], bounds[1])
62
+ dy = np.random.randint(bounds[0], bounds[1])
63
+ img2[y0:y0+dy, x0:x0+dx, :] = mean_color
64
+
65
+ return img1, img2
66
+
67
+ def spatial_transform(self, img1, img2, flow):
68
+ # randomly sample scale
69
+ ht, wd = img1.shape[:2]
70
+ min_scale = np.maximum(
71
+ (self.crop_size[0] + 8) / float(ht),
72
+ (self.crop_size[1] + 8) / float(wd))
73
+
74
+ scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
75
+ scale_x = scale
76
+ scale_y = scale
77
+ if np.random.rand() < self.stretch_prob:
78
+ scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
79
+ scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
80
+
81
+ scale_x = np.clip(scale_x, min_scale, None)
82
+ scale_y = np.clip(scale_y, min_scale, None)
83
+
84
+ if np.random.rand() < self.spatial_aug_prob:
85
+ # rescale the images
86
+ img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
87
+ img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
88
+ flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
89
+ flow = flow * [scale_x, scale_y]
90
+
91
+ if self.do_flip:
92
+ if np.random.rand() < self.h_flip_prob: # h-flip
93
+ img1 = img1[:, ::-1]
94
+ img2 = img2[:, ::-1]
95
+ flow = flow[:, ::-1] * [-1.0, 1.0]
96
+
97
+ if np.random.rand() < self.v_flip_prob: # v-flip
98
+ img1 = img1[::-1, :]
99
+ img2 = img2[::-1, :]
100
+ flow = flow[::-1, :] * [1.0, -1.0]
101
+
102
+ y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0])
103
+ x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1])
104
+
105
+ img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
106
+ img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
107
+ flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
108
+
109
+ return img1, img2, flow
110
+
111
+ def __call__(self, img1, img2, flow):
112
+ img1, img2 = self.color_transform(img1, img2)
113
+ img1, img2 = self.eraser_transform(img1, img2)
114
+ img1, img2, flow = self.spatial_transform(img1, img2, flow)
115
+
116
+ img1 = np.ascontiguousarray(img1)
117
+ img2 = np.ascontiguousarray(img2)
118
+ flow = np.ascontiguousarray(flow)
119
+
120
+ return img1, img2, flow
121
+
122
+ class SparseFlowAugmentor:
123
+ def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False):
124
+ # spatial augmentation params
125
+ self.crop_size = crop_size
126
+ self.min_scale = min_scale
127
+ self.max_scale = max_scale
128
+ self.spatial_aug_prob = 0.8
129
+ self.stretch_prob = 0.8
130
+ self.max_stretch = 0.2
131
+
132
+ # flip augmentation params
133
+ self.do_flip = do_flip
134
+ self.h_flip_prob = 0.5
135
+ self.v_flip_prob = 0.1
136
+
137
+ # photometric augmentation params
138
+ self.photo_aug = ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14)
139
+ self.asymmetric_color_aug_prob = 0.2
140
+ self.eraser_aug_prob = 0.5
141
+
142
+ def color_transform(self, img1, img2):
143
+ image_stack = np.concatenate([img1, img2], axis=0)
144
+ image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
145
+ img1, img2 = np.split(image_stack, 2, axis=0)
146
+ return img1, img2
147
+
148
+ def eraser_transform(self, img1, img2):
149
+ ht, wd = img1.shape[:2]
150
+ if np.random.rand() < self.eraser_aug_prob:
151
+ mean_color = np.mean(img2.reshape(-1, 3), axis=0)
152
+ for _ in range(np.random.randint(1, 3)):
153
+ x0 = np.random.randint(0, wd)
154
+ y0 = np.random.randint(0, ht)
155
+ dx = np.random.randint(50, 100)
156
+ dy = np.random.randint(50, 100)
157
+ img2[y0:y0+dy, x0:x0+dx, :] = mean_color
158
+
159
+ return img1, img2
160
+
161
+ def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0):
162
+ ht, wd = flow.shape[:2]
163
+ coords = np.meshgrid(np.arange(wd), np.arange(ht))
164
+ coords = np.stack(coords, axis=-1)
165
+
166
+ coords = coords.reshape(-1, 2).astype(np.float32)
167
+ flow = flow.reshape(-1, 2).astype(np.float32)
168
+ valid = valid.reshape(-1).astype(np.float32)
169
+
170
+ coords0 = coords[valid>=1]
171
+ flow0 = flow[valid>=1]
172
+
173
+ ht1 = int(round(ht * fy))
174
+ wd1 = int(round(wd * fx))
175
+
176
+ coords1 = coords0 * [fx, fy]
177
+ flow1 = flow0 * [fx, fy]
178
+
179
+ xx = np.round(coords1[:,0]).astype(np.int32)
180
+ yy = np.round(coords1[:,1]).astype(np.int32)
181
+
182
+ v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1)
183
+ xx = xx[v]
184
+ yy = yy[v]
185
+ flow1 = flow1[v]
186
+
187
+ flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32)
188
+ valid_img = np.zeros([ht1, wd1], dtype=np.int32)
189
+
190
+ flow_img[yy, xx] = flow1
191
+ valid_img[yy, xx] = 1
192
+
193
+ return flow_img, valid_img
194
+
195
+ def spatial_transform(self, img1, img2, flow, valid):
196
+ # randomly sample scale
197
+
198
+ ht, wd = img1.shape[:2]
199
+ min_scale = np.maximum(
200
+ (self.crop_size[0] + 1) / float(ht),
201
+ (self.crop_size[1] + 1) / float(wd))
202
+
203
+ scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
204
+ scale_x = np.clip(scale, min_scale, None)
205
+ scale_y = np.clip(scale, min_scale, None)
206
+
207
+ if np.random.rand() < self.spatial_aug_prob:
208
+ # rescale the images
209
+ img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
210
+ img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
211
+ flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y)
212
+
213
+ if self.do_flip:
214
+ if np.random.rand() < 0.5: # h-flip
215
+ img1 = img1[:, ::-1]
216
+ img2 = img2[:, ::-1]
217
+ flow = flow[:, ::-1] * [-1.0, 1.0]
218
+ valid = valid[:, ::-1]
219
+
220
+ margin_y = 20
221
+ margin_x = 50
222
+
223
+ y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y)
224
+ x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x)
225
+
226
+ y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0])
227
+ x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1])
228
+
229
+ img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
230
+ img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
231
+ flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
232
+ valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
233
+ return img1, img2, flow, valid
234
+
235
+
236
+ def __call__(self, img1, img2, flow, valid):
237
+ img1, img2 = self.color_transform(img1, img2)
238
+ img1, img2 = self.eraser_transform(img1, img2)
239
+ img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid)
240
+
241
+ img1 = np.ascontiguousarray(img1)
242
+ img2 = np.ascontiguousarray(img2)
243
+ flow = np.ascontiguousarray(flow)
244
+ valid = np.ascontiguousarray(valid)
245
+
246
+ return img1, img2, flow, valid
SD-CN-Animation/RAFT/utils/flow_viz.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization
2
+
3
+
4
+ # MIT License
5
+ #
6
+ # Copyright (c) 2018 Tom Runia
7
+ #
8
+ # Permission is hereby granted, free of charge, to any person obtaining a copy
9
+ # of this software and associated documentation files (the "Software"), to deal
10
+ # in the Software without restriction, including without limitation the rights
11
+ # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
+ # copies of the Software, and to permit persons to whom the Software is
13
+ # furnished to do so, subject to conditions.
14
+ #
15
+ # Author: Tom Runia
16
+ # Date Created: 2018-08-03
17
+
18
+ import numpy as np
19
+
20
+ def make_colorwheel():
21
+ """
22
+ Generates a color wheel for optical flow visualization as presented in:
23
+ Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
24
+ URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
25
+
26
+ Code follows the original C++ source code of Daniel Scharstein.
27
+ Code follows the the Matlab source code of Deqing Sun.
28
+
29
+ Returns:
30
+ np.ndarray: Color wheel
31
+ """
32
+
33
+ RY = 15
34
+ YG = 6
35
+ GC = 4
36
+ CB = 11
37
+ BM = 13
38
+ MR = 6
39
+
40
+ ncols = RY + YG + GC + CB + BM + MR
41
+ colorwheel = np.zeros((ncols, 3))
42
+ col = 0
43
+
44
+ # RY
45
+ colorwheel[0:RY, 0] = 255
46
+ colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
47
+ col = col+RY
48
+ # YG
49
+ colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
50
+ colorwheel[col:col+YG, 1] = 255
51
+ col = col+YG
52
+ # GC
53
+ colorwheel[col:col+GC, 1] = 255
54
+ colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
55
+ col = col+GC
56
+ # CB
57
+ colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
58
+ colorwheel[col:col+CB, 2] = 255
59
+ col = col+CB
60
+ # BM
61
+ colorwheel[col:col+BM, 2] = 255
62
+ colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
63
+ col = col+BM
64
+ # MR
65
+ colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
66
+ colorwheel[col:col+MR, 0] = 255
67
+ return colorwheel
68
+
69
+
70
+ def flow_uv_to_colors(u, v, convert_to_bgr=False):
71
+ """
72
+ Applies the flow color wheel to (possibly clipped) flow components u and v.
73
+
74
+ According to the C++ source code of Daniel Scharstein
75
+ According to the Matlab source code of Deqing Sun
76
+
77
+ Args:
78
+ u (np.ndarray): Input horizontal flow of shape [H,W]
79
+ v (np.ndarray): Input vertical flow of shape [H,W]
80
+ convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
81
+
82
+ Returns:
83
+ np.ndarray: Flow visualization image of shape [H,W,3]
84
+ """
85
+ flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
86
+ colorwheel = make_colorwheel() # shape [55x3]
87
+ ncols = colorwheel.shape[0]
88
+ rad = np.sqrt(np.square(u) + np.square(v))
89
+ a = np.arctan2(-v, -u)/np.pi
90
+ fk = (a+1) / 2*(ncols-1)
91
+ k0 = np.floor(fk).astype(np.int32)
92
+ k1 = k0 + 1
93
+ k1[k1 == ncols] = 0
94
+ f = fk - k0
95
+ for i in range(colorwheel.shape[1]):
96
+ tmp = colorwheel[:,i]
97
+ col0 = tmp[k0] / 255.0
98
+ col1 = tmp[k1] / 255.0
99
+ col = (1-f)*col0 + f*col1
100
+ idx = (rad <= 1)
101
+ col[idx] = 1 - rad[idx] * (1-col[idx])
102
+ col[~idx] = col[~idx] * 0.75 # out of range
103
+ # Note the 2-i => BGR instead of RGB
104
+ ch_idx = 2-i if convert_to_bgr else i
105
+ flow_image[:,:,ch_idx] = np.floor(255 * col)
106
+ return flow_image
107
+
108
+
109
+ def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
110
+ """
111
+ Expects a two dimensional flow image of shape.
112
+
113
+ Args:
114
+ flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
115
+ clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
116
+ convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
117
+
118
+ Returns:
119
+ np.ndarray: Flow visualization image of shape [H,W,3]
120
+ """
121
+ assert flow_uv.ndim == 3, 'input flow must have three dimensions'
122
+ assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
123
+ if clip_flow is not None:
124
+ flow_uv = np.clip(flow_uv, 0, clip_flow)
125
+ u = flow_uv[:,:,0]
126
+ v = flow_uv[:,:,1]
127
+ rad = np.sqrt(np.square(u) + np.square(v))
128
+ rad_max = np.max(rad)
129
+ epsilon = 1e-5
130
+ u = u / (rad_max + epsilon)
131
+ v = v / (rad_max + epsilon)
132
+ return flow_uv_to_colors(u, v, convert_to_bgr)
SD-CN-Animation/RAFT/utils/frame_utils.py ADDED
@@ -0,0 +1,137 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from PIL import Image
3
+ from os.path import *
4
+ import re
5
+
6
+ import cv2
7
+ cv2.setNumThreads(0)
8
+ cv2.ocl.setUseOpenCL(False)
9
+
10
+ TAG_CHAR = np.array([202021.25], np.float32)
11
+
12
+ def readFlow(fn):
13
+ """ Read .flo file in Middlebury format"""
14
+ # Code adapted from:
15
+ # http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
16
+
17
+ # WARNING: this will work on little-endian architectures (eg Intel x86) only!
18
+ # print 'fn = %s'%(fn)
19
+ with open(fn, 'rb') as f:
20
+ magic = np.fromfile(f, np.float32, count=1)
21
+ if 202021.25 != magic:
22
+ print('Magic number incorrect. Invalid .flo file')
23
+ return None
24
+ else:
25
+ w = np.fromfile(f, np.int32, count=1)
26
+ h = np.fromfile(f, np.int32, count=1)
27
+ # print 'Reading %d x %d flo file\n' % (w, h)
28
+ data = np.fromfile(f, np.float32, count=2*int(w)*int(h))
29
+ # Reshape data into 3D array (columns, rows, bands)
30
+ # The reshape here is for visualization, the original code is (w,h,2)
31
+ return np.resize(data, (int(h), int(w), 2))
32
+
33
+ def readPFM(file):
34
+ file = open(file, 'rb')
35
+
36
+ color = None
37
+ width = None
38
+ height = None
39
+ scale = None
40
+ endian = None
41
+
42
+ header = file.readline().rstrip()
43
+ if header == b'PF':
44
+ color = True
45
+ elif header == b'Pf':
46
+ color = False
47
+ else:
48
+ raise Exception('Not a PFM file.')
49
+
50
+ dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
51
+ if dim_match:
52
+ width, height = map(int, dim_match.groups())
53
+ else:
54
+ raise Exception('Malformed PFM header.')
55
+
56
+ scale = float(file.readline().rstrip())
57
+ if scale < 0: # little-endian
58
+ endian = '<'
59
+ scale = -scale
60
+ else:
61
+ endian = '>' # big-endian
62
+
63
+ data = np.fromfile(file, endian + 'f')
64
+ shape = (height, width, 3) if color else (height, width)
65
+
66
+ data = np.reshape(data, shape)
67
+ data = np.flipud(data)
68
+ return data
69
+
70
+ def writeFlow(filename,uv,v=None):
71
+ """ Write optical flow to file.
72
+
73
+ If v is None, uv is assumed to contain both u and v channels,
74
+ stacked in depth.
75
+ Original code by Deqing Sun, adapted from Daniel Scharstein.
76
+ """
77
+ nBands = 2
78
+
79
+ if v is None:
80
+ assert(uv.ndim == 3)
81
+ assert(uv.shape[2] == 2)
82
+ u = uv[:,:,0]
83
+ v = uv[:,:,1]
84
+ else:
85
+ u = uv
86
+
87
+ assert(u.shape == v.shape)
88
+ height,width = u.shape
89
+ f = open(filename,'wb')
90
+ # write the header
91
+ f.write(TAG_CHAR)
92
+ np.array(width).astype(np.int32).tofile(f)
93
+ np.array(height).astype(np.int32).tofile(f)
94
+ # arrange into matrix form
95
+ tmp = np.zeros((height, width*nBands))
96
+ tmp[:,np.arange(width)*2] = u
97
+ tmp[:,np.arange(width)*2 + 1] = v
98
+ tmp.astype(np.float32).tofile(f)
99
+ f.close()
100
+
101
+
102
+ def readFlowKITTI(filename):
103
+ flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR)
104
+ flow = flow[:,:,::-1].astype(np.float32)
105
+ flow, valid = flow[:, :, :2], flow[:, :, 2]
106
+ flow = (flow - 2**15) / 64.0
107
+ return flow, valid
108
+
109
+ def readDispKITTI(filename):
110
+ disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0
111
+ valid = disp > 0.0
112
+ flow = np.stack([-disp, np.zeros_like(disp)], -1)
113
+ return flow, valid
114
+
115
+
116
+ def writeFlowKITTI(filename, uv):
117
+ uv = 64.0 * uv + 2**15
118
+ valid = np.ones([uv.shape[0], uv.shape[1], 1])
119
+ uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
120
+ cv2.imwrite(filename, uv[..., ::-1])
121
+
122
+
123
+ def read_gen(file_name, pil=False):
124
+ ext = splitext(file_name)[-1]
125
+ if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
126
+ return Image.open(file_name)
127
+ elif ext == '.bin' or ext == '.raw':
128
+ return np.load(file_name)
129
+ elif ext == '.flo':
130
+ return readFlow(file_name).astype(np.float32)
131
+ elif ext == '.pfm':
132
+ flow = readPFM(file_name).astype(np.float32)
133
+ if len(flow.shape) == 2:
134
+ return flow
135
+ else:
136
+ return flow[:, :, :-1]
137
+ return []
SD-CN-Animation/RAFT/utils/utils.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn.functional as F
3
+ import numpy as np
4
+ from scipy import interpolate
5
+
6
+
7
+ class InputPadder:
8
+ """ Pads images such that dimensions are divisible by 8 """
9
+ def __init__(self, dims, mode='sintel'):
10
+ self.ht, self.wd = dims[-2:]
11
+ pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8
12
+ pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8
13
+ if mode == 'sintel':
14
+ self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2]
15
+ else:
16
+ self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht]
17
+
18
+ def pad(self, *inputs):
19
+ return [F.pad(x, self._pad, mode='replicate') for x in inputs]
20
+
21
+ def unpad(self,x):
22
+ ht, wd = x.shape[-2:]
23
+ c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]]
24
+ return x[..., c[0]:c[1], c[2]:c[3]]
25
+
26
+ def forward_interpolate(flow):
27
+ flow = flow.detach().cpu().numpy()
28
+ dx, dy = flow[0], flow[1]
29
+
30
+ ht, wd = dx.shape
31
+ x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht))
32
+
33
+ x1 = x0 + dx
34
+ y1 = y0 + dy
35
+
36
+ x1 = x1.reshape(-1)
37
+ y1 = y1.reshape(-1)
38
+ dx = dx.reshape(-1)
39
+ dy = dy.reshape(-1)
40
+
41
+ valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht)
42
+ x1 = x1[valid]
43
+ y1 = y1[valid]
44
+ dx = dx[valid]
45
+ dy = dy[valid]
46
+
47
+ flow_x = interpolate.griddata(
48
+ (x1, y1), dx, (x0, y0), method='nearest', fill_value=0)
49
+
50
+ flow_y = interpolate.griddata(
51
+ (x1, y1), dy, (x0, y0), method='nearest', fill_value=0)
52
+
53
+ flow = np.stack([flow_x, flow_y], axis=0)
54
+ return torch.from_numpy(flow).float()
55
+
56
+
57
+ def bilinear_sampler(img, coords, mode='bilinear', mask=False):
58
+ """ Wrapper for grid_sample, uses pixel coordinates """
59
+ H, W = img.shape[-2:]
60
+ xgrid, ygrid = coords.split([1,1], dim=-1)
61
+ xgrid = 2*xgrid/(W-1) - 1
62
+ ygrid = 2*ygrid/(H-1) - 1
63
+
64
+ grid = torch.cat([xgrid, ygrid], dim=-1)
65
+ img = F.grid_sample(img, grid, align_corners=True)
66
+
67
+ if mask:
68
+ mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
69
+ return img, mask.float()
70
+
71
+ return img
72
+
73
+
74
+ def coords_grid(batch, ht, wd, device):
75
+ coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device))
76
+ coords = torch.stack(coords[::-1], dim=0).float()
77
+ return coords[None].repeat(batch, 1, 1, 1)
78
+
79
+
80
+ def upflow8(flow, mode='bilinear'):
81
+ new_size = (8 * flow.shape[2], 8 * flow.shape[3])
82
+ return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
SD-CN-Animation/examples/bonefire_1.mp4 ADDED
Binary file (840 kB). View file
 
SD-CN-Animation/examples/bonfire_1.gif ADDED
SD-CN-Animation/examples/cn_settings.png ADDED
SD-CN-Animation/examples/diamond_4.gif ADDED
SD-CN-Animation/examples/diamond_4.mp4 ADDED
Binary file (353 kB). View file
 
SD-CN-Animation/examples/flower_1.gif ADDED

Git LFS Details

  • SHA256: c4fa97e65ea048e27472fa6b7d151ac66074c1ac3e5c5b4cfa333321d97b0bb9
  • Pointer size: 132 Bytes
  • Size of remote file: 1.68 MB
SD-CN-Animation/examples/flower_1.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8db0719d9f215b775ae1b5dae912a425bc010f0586b41894c14bb8ad042711e
3
+ size 1259280
SD-CN-Animation/examples/flower_11.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7499401998e41c65471963d6cbd70568908dd83a8c957a43940df99be7c52026
3
+ size 1328049
SD-CN-Animation/examples/girl_org.gif ADDED

Git LFS Details

  • SHA256: 059307d932d818247672b8de1c8550a67d891ad9c2c32494e30b424abe643480
  • Pointer size: 132 Bytes
  • Size of remote file: 3.15 MB
SD-CN-Animation/examples/girl_to_jc.gif ADDED

Git LFS Details

  • SHA256: 604f24c3072ac1e17f87c0664894e93059e6741d9f17d0f03f33214549edc967
  • Pointer size: 132 Bytes
  • Size of remote file: 3.39 MB
SD-CN-Animation/examples/girl_to_jc.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d09ded8b44f7e30d55d5d6245d9ec7fa3b95e970a8c29d2c544b6c288341e39
3
+ size 5274033
SD-CN-Animation/examples/girl_to_wc.gif ADDED

Git LFS Details

  • SHA256: 9d978c31d2d58f408fa40b186f080fbcdff89fb6e1d8a7cf2a0c81276735bd0c
  • Pointer size: 132 Bytes
  • Size of remote file: 3.32 MB
SD-CN-Animation/examples/girl_to_wc.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bd730de667b8e7ea5af2dddcf129095694349f126e06291c9b1c2bb7d49843a8
3
+ size 5630710
SD-CN-Animation/examples/gold_1.gif ADDED

Git LFS Details

  • SHA256: 20d4676372b63cef565f614676660b37226c5fbf7825ba2add15a6262eff1bed
  • Pointer size: 132 Bytes
  • Size of remote file: 1.31 MB
SD-CN-Animation/examples/gold_1.mp4 ADDED
Binary file (636 kB). View file