toto10's picture
Upload folder using huggingface_hub (#1)
34097e9
raw
history blame
31.7 kB
from linecache import clearcache
import os
import gc
import numpy as np
import os.path
import re
import torch
import tqdm
import datetime
import csv
import json
import torch.nn as nn
import scipy.ndimage
from scipy.ndimage.filters import median_filter as filter
from PIL import Image, ImageFont, ImageDraw
from tqdm import tqdm
from modules import shared, processing, sd_models, images, sd_samplers,scripts
from modules.ui import plaintext_to_html
from modules.shared import opts
from modules.processing import create_infotext,Processed
from modules.sd_models import load_model,checkpoints_loaded
from scripts.mergers.model_util import usemodelgen,filenamecutter,savemodel
from inspect import currentframe
stopmerge = False
def freezemtime():
global stopmerge
stopmerge = True
mergedmodel=[]
TYPESEG = ["none","alpha","beta (if Triple or Twice is not selected,Twice automatically enable)","alpha and beta","seed", "mbw alpha","mbw beta","mbw alpha and beta", "model_A","model_B","model_C","pinpoint blocks (alpha or beta must be selected for another axis)","elemental","pinpoint element","effective elemental checker","tensors","calcmode","prompt"]
TYPES = ["none","alpha","beta","alpha and beta","seed", "mbw alpha ","mbw beta","mbw alpha and beta", "model_A","model_B","model_C","pinpoint blocks","elemental","pinpoint element","effective","tensor","calcmode","prompt"]
MODES=["Weight" ,"Add" ,"Triple","Twice"]
SAVEMODES=["save model", "overwrite"]
#type[0:aplha,1:beta,2:seed,3:mbw,4:model_A,5:model_B,6:model_C]
#msettings=[0 weights_a,1 weights_b,2 model_a,3 model_b,4 model_c,5 base_alpha,6 base_beta,7 mode,8 useblocks,9 custom_name,10 save_sets,11 id_sets,12 wpresets]
#id sets "image", "PNG info","XY grid"
hear = False
hearm = False
non4 = [None]*4
def caster(news,hear):
if hear: print(news)
def casterr(*args,hear=hear):
if hear:
names = {id(v): k for k, v in currentframe().f_back.f_locals.items()}
print('\n'.join([names.get(id(arg), '???') + ' = ' + repr(arg) for arg in args]))
#msettings=[weights_a,weights_b,model_a,model_b,model_c,device,base_alpha,base_beta,mode,loranames,useblocks,custom_name,save_sets,id_sets,wpresets,deep]
def smergegen(weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,
calcmode,useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,
esettings,
prompt,nprompt,steps,sampler,cfg,seed,w,h,
hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size,
currentmodel,imggen):
deepprint = True if "print change" in esettings else False
result,currentmodel,modelid,theta_0,metadata = smerge(
weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,calcmode,
useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,deepprint=deepprint
)
if "ERROR" in result or "STOPPED" in result:
return result,"not loaded",*non4
usemodelgen(theta_0,model_a,currentmodel)
save = True if SAVEMODES[0] in save_sets else False
result = savemodel(theta_0,currentmodel,custom_name,save_sets,model_a,metadata) if save else "Merged model loaded:"+currentmodel
del theta_0
gc.collect()
if imggen :
images = simggen(prompt,nprompt,steps,sampler,cfg,seed,w,h,hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size,currentmodel,id_sets,modelid)
return result,currentmodel,*images[:4]
else:
return result,currentmodel
NUM_INPUT_BLOCKS = 12
NUM_MID_BLOCK = 1
NUM_OUTPUT_BLOCKS = 12
NUM_TOTAL_BLOCKS = NUM_INPUT_BLOCKS + NUM_MID_BLOCK + NUM_OUTPUT_BLOCKS
blockid=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
def smerge(weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,calcmode,
useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,deepprint = False):
caster("merge start",hearm)
global hear,mergedmodel,stopmerge
stopmerge = False
gc.collect()
# for from file
if type(useblocks) is str:
useblocks = True if useblocks =="True" else False
if type(base_alpha) == str:base_alpha = float(base_alpha)
if type(base_beta) == str:base_beta = float(base_beta)
weights_a_orig = weights_a
weights_b_orig = weights_b
# preset to weights
if wpresets != False and useblocks:
weights_a = wpreseter(weights_a,wpresets)
weights_b = wpreseter(weights_b,wpresets)
# mode select booleans
save = True if SAVEMODES[0] in save_sets else False
usebeta = MODES[2] in mode or MODES[3] in mode or calcmode == "tensor"
save_metadata = "save metadata" in save_sets
metadata = {"format": "pt"}
if not useblocks:
weights_a = weights_b = ""
#for save log and save current model
mergedmodel =[weights_a,weights_b,
hashfromname(model_a),hashfromname(model_b),hashfromname(model_c),
base_alpha,base_beta,mode,useblocks,custom_name,save_sets,id_sets,deep,calcmode,tensor].copy()
model_a = namefromhash(model_a)
model_b = namefromhash(model_b)
model_c = namefromhash(model_c)
theta_2 = {}
caster(mergedmodel,False)
if len(deep) > 0:
deep = deep.replace("\n",",")
deep = deep.split(",")
#format check
if model_a =="" or model_b =="" or ((not MODES[0] in mode) and model_c=="") :
return "ERROR: Necessary model is not selected",*non4
#for MBW text to list
if useblocks:
weights_a_t=weights_a.split(',',1)
weights_b_t=weights_b.split(',',1)
base_alpha = float(weights_a_t[0])
weights_a = [float(w) for w in weights_a_t[1].split(',')]
caster(f"from {weights_a_t}, alpha = {base_alpha},weights_a ={weights_a}",hearm)
if len(weights_a) != 25:return f"ERROR: weights alpha value must be {26}.",*non4
if usebeta:
base_beta = float(weights_b_t[0])
weights_b = [float(w) for w in weights_b_t[1].split(',')]
caster(f"from {weights_b_t}, beta = {base_beta},weights_a ={weights_b}",hearm)
if len(weights_b) != 25: return f"ERROR: weights beta value must be {26}.",*non4
caster("model load start",hearm)
print(f" model A \t: {model_a}")
print(f" model B \t: {model_b}")
print(f" model C \t: {model_c}")
print(f" alpha,beta\t: {base_alpha,base_beta}")
print(f" weights_alpha\t: {weights_a}")
print(f" weights_beta\t: {weights_b}")
print(f" mode\t\t: {mode}")
print(f" MBW \t\t: {useblocks}")
print(f" CalcMode \t: {calcmode}")
print(f" Elemental \t: {deep}")
print(f" Tensors \t: {tensor}")
theta_1=load_model_weights_m(model_b,False,True,save).copy()
if MODES[1] in mode:#Add
if stopmerge: return "STOPPED", *non4
theta_2 = load_model_weights_m(model_c,False,False,save).copy()
for key in tqdm(theta_1.keys()):
if 'model' in key:
if key in theta_2:
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
theta_1[key] = theta_1[key]- t2
else:
theta_1[key] = torch.zeros_like(theta_1[key])
del theta_2
if stopmerge: return "STOPPED", *non4
if calcmode == "tensor":
theta_t = load_model_weights_m(model_a,True,False,save).copy()
theta_0 ={}
for key in theta_t:
theta_0[key] = theta_t[key].clone()
del theta_t
else:
theta_0=load_model_weights_m(model_a,True,False,save).copy()
if MODES[2] in mode or MODES[3] in mode:#Tripe or Twice
theta_2 = load_model_weights_m(model_c,False,False,save).copy()
alpha = base_alpha
beta = base_beta
re_inp = re.compile(r'\.input_blocks\.(\d+)\.') # 12
re_mid = re.compile(r'\.middle_block\.(\d+)\.') # 1
re_out = re.compile(r'\.output_blocks\.(\d+)\.') # 12
chckpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]
count_target_of_basealpha = 0
if calcmode =="cosineA": #favors modelA's structure with details from B
if stopmerge: return "STOPPED", *non4
sim = torch.nn.CosineSimilarity(dim=0)
sims = np.array([], dtype=np.float64)
for key in (tqdm(theta_0.keys(), desc="Stage 0/2")):
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_1:
theta_0_norm = nn.functional.normalize(theta_0[key].to(torch.float32), p=2, dim=0)
theta_1_norm = nn.functional.normalize(theta_1[key].to(torch.float32), p=2, dim=0)
simab = sim(theta_0_norm, theta_1_norm)
sims = np.append(sims,simab.numpy())
sims = sims[~np.isnan(sims)]
sims = np.delete(sims, np.where(sims<np.percentile(sims, 1 ,method = 'midpoint')))
sims = np.delete(sims, np.where(sims>np.percentile(sims, 99 ,method = 'midpoint')))
if calcmode =="cosineB": #favors modelB's structure with details from A
if stopmerge: return "STOPPED", *non4
sim = torch.nn.CosineSimilarity(dim=0)
sims = np.array([], dtype=np.float64)
for key in (tqdm(theta_0.keys(), desc="Stage 0/2")):
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_1:
simab = sim(theta_0[key].to(torch.float32), theta_1[key].to(torch.float32))
dot_product = torch.dot(theta_0[key].view(-1).to(torch.float32), theta_1[key].view(-1).to(torch.float32))
magnitude_similarity = dot_product / (torch.norm(theta_0[key].to(torch.float32)) * torch.norm(theta_1[key].to(torch.float32)))
combined_similarity = (simab + magnitude_similarity) / 2.0
sims = np.append(sims, combined_similarity.numpy())
sims = sims[~np.isnan(sims)]
sims = np.delete(sims, np.where(sims < np.percentile(sims, 1, method='midpoint')))
sims = np.delete(sims, np.where(sims > np.percentile(sims, 99, method='midpoint')))
for key in (tqdm(theta_0.keys(), desc="Stage 1/2") if not False else theta_0.keys()):
if stopmerge: return "STOPPED", *non4
if "model" in key and key in theta_1:
if usebeta and (not key in theta_2) and (not theta_2 == {}) :
continue
weight_index = -1
current_alpha = alpha
current_beta = beta
if key in chckpoint_dict_skip_on_merge:
continue
# check weighted and U-Net or not
if weights_a is not None and 'model.diffusion_model.' in key:
# check block index
weight_index = -1
if 'time_embed' in key:
weight_index = 0 # before input blocks
elif '.out.' in key:
weight_index = NUM_TOTAL_BLOCKS - 1 # after output blocks
else:
m = re_inp.search(key)
if m:
inp_idx = int(m.groups()[0])
weight_index = inp_idx
else:
m = re_mid.search(key)
if m:
weight_index = NUM_INPUT_BLOCKS
else:
m = re_out.search(key)
if m:
out_idx = int(m.groups()[0])
weight_index = NUM_INPUT_BLOCKS + NUM_MID_BLOCK + out_idx
if weight_index >= NUM_TOTAL_BLOCKS:
print(f"ERROR: illegal block index: {key}")
return f"ERROR: illegal block index: {key}",*non4
if weight_index >= 0 and useblocks:
current_alpha = weights_a[weight_index]
if usebeta: current_beta = weights_b[weight_index]
else:
count_target_of_basealpha = count_target_of_basealpha + 1
if len(deep) > 0:
skey = key + blockid[weight_index+1]
for d in deep:
if d.count(":") != 2 :continue
dbs,dws,dr = d.split(":")[0],d.split(":")[1],d.split(":")[2]
dbs,dws = dbs.split(" "), dws.split(" ")
dbn,dbs = (True,dbs[1:]) if dbs[0] == "NOT" else (False,dbs)
dwn,dws = (True,dws[1:]) if dws[0] == "NOT" else (False,dws)
flag = dbn
for db in dbs:
if db in skey:
flag = not dbn
if flag:flag = dwn
else:continue
for dw in dws:
if dw in skey:
flag = not dwn
if flag:
dr = float(dr)
if deepprint :print(dbs,dws,key,dr)
current_alpha = dr
if calcmode == "normal":
if MODES[1] in mode:#Add
caster(f"model A[{key}] + {current_alpha} + * (model B - model C)[{key}]",hear)
theta_0[key] = theta_0[key] + current_alpha * theta_1[key]
elif MODES[2] in mode:#Triple
caster(f"model A[{key}] + {1-current_alpha-current_beta} + model B[{key}]*{current_alpha} + model C[{key}]*{current_beta}",hear)
theta_0[key] = (1 - current_alpha-current_beta) * theta_0[key] + current_alpha * theta_1[key]+current_beta * theta_2[key]
elif MODES[3] in mode:#Twice
caster(f"model A[{key}] + {1-current_alpha} + * model B[{key}]*{alpha}",hear)
caster(f"model A+B[{key}] + {1-current_beta} + * model C[{key}]*{beta}",hear)
theta_0[key] = (1 - current_alpha) * theta_0[key] + current_alpha * theta_1[key]
theta_0[key] = (1 - current_beta) * theta_0[key] + current_beta * theta_2[key]
else:#Weight
if current_alpha == 1:
caster(f"alpha = 0,model A[{key}=model B[{key}",hear)
theta_0[key] = theta_1[key]
elif current_alpha !=0:
caster(f"model A[{key}] + {1-current_alpha} + * (model B)[{key}]*{alpha}",hear)
theta_0[key] = (1 - current_alpha) * theta_0[key] + current_alpha * theta_1[key]
elif calcmode == "cosineA": #favors modelA's structure with details from B
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_0:
# Normalize the vectors before merging
theta_0_norm = nn.functional.normalize(theta_0[key].to(torch.float32), p=2, dim=0)
theta_1_norm = nn.functional.normalize(theta_1[key].to(torch.float32), p=2, dim=0)
simab = sim(theta_0_norm, theta_1_norm)
dot_product = torch.dot(theta_0_norm.view(-1), theta_1_norm.view(-1))
magnitude_similarity = dot_product / (torch.norm(theta_0_norm) * torch.norm(theta_1_norm))
combined_similarity = (simab + magnitude_similarity) / 2.0
k = (combined_similarity - sims.min()) / (sims.max() - sims.min())
k = k - current_alpha
k = k.clip(min=.0,max=1.)
caster(f"model A[{key}] + {1-k} + * (model B)[{key}]*{k}",hear)
theta_0[key] = theta_1[key] * (1 - k) + theta_0[key] * k
elif calcmode == "cosineB": #favors modelB's structure with details from A
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_0:
simab = sim(theta_0[key].to(torch.float32), theta_1[key].to(torch.float32))
dot_product = torch.dot(theta_0[key].view(-1).to(torch.float32), theta_1[key].view(-1).to(torch.float32))
magnitude_similarity = dot_product / (torch.norm(theta_0[key].to(torch.float32)) * torch.norm(theta_1[key].to(torch.float32)))
combined_similarity = (simab + magnitude_similarity) / 2.0
k = (combined_similarity - sims.min()) / (sims.max() - sims.min())
k = k - current_alpha
k = k.clip(min=.0,max=1.)
caster(f"model A[{key}] + {1-k} + * (model B)[{key}]*{k}",hear)
theta_0[key] = theta_1[key] * (1 - k) + theta_0[key] * k
elif calcmode == "smoothAdd":
caster(f"model A[{key}] + {current_alpha} + * (model B - model C)[{key}]", hear)
# Apply median filter to the weight differences
filtered_diff = scipy.ndimage.median_filter(theta_1[key].to(torch.float32).cpu().numpy(), size=3)
# Apply Gaussian filter to the filtered differences
filtered_diff = scipy.ndimage.gaussian_filter(filtered_diff, sigma=1)
theta_1[key] = torch.tensor(filtered_diff)
# Add the filtered differences to the original weights
theta_0[key] = theta_0[key] + current_alpha * theta_1[key]
elif calcmode == "tensor":
dim = theta_0[key].dim()
if dim == 0 : continue
if current_alpha+current_beta <= 1 :
talphas = int(theta_0[key].shape[0]*(current_beta))
talphae = int(theta_0[key].shape[0]*(current_alpha+current_beta))
if dim == 1:
theta_0[key][talphas:talphae] = theta_1[key][talphas:talphae].clone()
elif dim == 2:
theta_0[key][talphas:talphae,:] = theta_1[key][talphas:talphae,:].clone()
elif dim == 3:
theta_0[key][talphas:talphae,:,:] = theta_1[key][talphas:talphae,:,:].clone()
elif dim == 4:
theta_0[key][talphas:talphae,:,:,:] = theta_1[key][talphas:talphae,:,:,:].clone()
else:
talphas = int(theta_0[key].shape[0]*(current_alpha+current_beta-1))
talphae = int(theta_0[key].shape[0]*(current_beta))
theta_t = theta_1[key].clone()
if dim == 1:
theta_t[talphas:talphae] = theta_0[key][talphas:talphae].clone()
elif dim == 2:
theta_t[talphas:talphae,:] = theta_0[key][talphas:talphae,:].clone()
elif dim == 3:
theta_t[talphas:talphae,:,:] = theta_0[key][talphas:talphae,:,:].clone()
elif dim == 4:
theta_t[talphas:talphae,:,:,:] = theta_0[key][talphas:talphae,:,:,:].clone()
theta_0[key] = theta_t
currentmodel = makemodelname(weights_a,weights_b,model_a, model_b,model_c, base_alpha,base_beta,useblocks,mode)
for key in tqdm(theta_1.keys(), desc="Stage 2/2"):
if key in chckpoint_dict_skip_on_merge:
continue
if "model" in key and key not in theta_0:
theta_0.update({key:theta_1[key]})
del theta_1
modelid = rwmergelog(currentmodel,mergedmodel)
caster(mergedmodel,False)
if save_metadata:
merge_recipe = {
"type": "sd-webui-supermerger",
"weights_alpha": weights_a if useblocks else None,
"weights_beta": weights_b if useblocks else None,
"weights_alpha_orig": weights_a_orig if useblocks else None,
"weights_beta_orig": weights_b_orig if useblocks else None,
"model_a": longhashfromname(model_a),
"model_b": longhashfromname(model_b),
"model_c": longhashfromname(model_c),
"base_alpha": base_alpha,
"base_beta": base_beta,
"mode": mode,
"mbw": useblocks,
"elemental_merge": deep,
"calcmode" : calcmode
}
metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
metadata["sd_merge_models"] = {}
def add_model_metadata(checkpoint_name):
checkpoint_info = sd_models.get_closet_checkpoint_match(checkpoint_name)
checkpoint_info.calculate_shorthash()
metadata["sd_merge_models"][checkpoint_info.sha256] = {
"name": checkpoint_name,
"legacy_hash": checkpoint_info.hash
}
#metadata["sd_merge_models"].update(checkpoint_info.metadata.get("sd_merge_models", {}))
if model_a:
add_model_metadata(model_a)
if model_b:
add_model_metadata(model_b)
if model_c:
add_model_metadata(model_c)
metadata["sd_merge_models"] = json.dumps(metadata["sd_merge_models"])
return "",currentmodel,modelid,theta_0,metadata
def forkforker(filename):
try:
return sd_models.read_state_dict(filename,"cuda")
except:
return sd_models.read_state_dict(filename)
def load_model_weights_m(model,model_a,model_b,save):
checkpoint_info = sd_models.get_closet_checkpoint_match(model)
sd_model_name = checkpoint_info.model_name
cachenum = shared.opts.sd_checkpoint_cache
if save:
if model_a:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from file")
return forkforker(checkpoint_info.filename)
if checkpoint_info in checkpoints_loaded:
print(f"Loading weights [{sd_model_name}] from cache")
return checkpoints_loaded[checkpoint_info]
elif cachenum>0 and model_a:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from cache")
return checkpoints_loaded[checkpoint_info]
elif cachenum>1 and model_b:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from cache")
return checkpoints_loaded[checkpoint_info]
elif cachenum>2:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from cache")
return checkpoints_loaded[checkpoint_info]
else:
if model_a:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from file")
return forkforker(checkpoint_info.filename)
def makemodelname(weights_a,weights_b,model_a, model_b,model_c, alpha,beta,useblocks,mode):
model_a=filenamecutter(model_a)
model_b=filenamecutter(model_b)
model_c=filenamecutter(model_c)
if type(alpha) == str:alpha = float(alpha)
if type(beta)== str:beta = float(beta)
if useblocks:
if MODES[1] in mode:#add
currentmodel =f"{model_a} + ({model_b} - {model_c}) x alpha ({str(round(alpha,3))},{','.join(str(s) for s in weights_a)}"
elif MODES[2] in mode:#triple
currentmodel =f"{model_a} x (1-alpha-beta) + {model_b} x alpha + {model_c} x beta (alpha = {str(round(alpha,3))},{','.join(str(s) for s in weights_a)},beta = {beta},{','.join(str(s) for s in weights_b)})"
elif MODES[3] in mode:#twice
currentmodel =f"({model_a} x (1-alpha) + {model_b} x alpha)x(1-beta)+ {model_c} x beta ({str(round(alpha,3))},{','.join(str(s) for s in weights_a)})_({str(round(beta,3))},{','.join(str(s) for s in weights_b)})"
else:
currentmodel =f"{model_a} x (1-alpha) + {model_b} x alpha ({str(round(alpha,3))},{','.join(str(s) for s in weights_a)})"
else:
if MODES[1] in mode:#add
currentmodel =f"{model_a} + ({model_b} - {model_c}) x {str(round(alpha,3))}"
elif MODES[2] in mode:#triple
currentmodel =f"{model_a} x {str(round(1-alpha-beta,3))} + {model_b} x {str(round(alpha,3))} + {model_c} x {str(round(beta,3))}"
elif MODES[3] in mode:#twice
currentmodel =f"({model_a} x {str(round(1-alpha,3))} +{model_b} x {str(round(alpha,3))}) x {str(round(1-beta,3))} + {model_c} x {str(round(beta,3))}"
else:
currentmodel =f"{model_a} x {str(round(1-alpha,3))} + {model_b} x {str(round(alpha,3))}"
return currentmodel
path_root = scripts.basedir()
def rwmergelog(mergedname = "",settings= [],id = 0):
setting = settings.copy()
filepath = os.path.join(path_root, "mergehistory.csv")
is_file = os.path.isfile(filepath)
if not is_file:
with open(filepath, 'a') as f:
#msettings=[0 weights_a,1 weights_b,2 model_a,3 model_b,4 model_c,5 base_alpha,6 base_beta,7 mode,8 useblocks,9 custom_name,10 save_sets,11 id_sets, 12 deep 13 calcmode]
f.writelines('"ID","time","name","weights alpha","weights beta","model A","model B","model C","alpha","beta","mode","use MBW","plus lora","custum name","save setting","use ID"\n')
with open(filepath, 'r+') as f:
reader = csv.reader(f)
mlist = [raw for raw in reader]
if mergedname != "":
mergeid = len(mlist)
setting.insert(0,mergedname)
for i,x in enumerate(setting):
if "," in str(x):setting[i] = f'"{str(setting[i])}"'
text = ",".join(map(str, setting))
text=str(mergeid)+","+datetime.datetime.now().strftime('%Y.%m.%d %H.%M.%S.%f')[:-7]+"," + text + "\n"
f.writelines(text)
return mergeid
try:
out = mlist[int(id)]
except:
out = "ERROR: OUT of ID index"
return out
def draw_origin(grid, text,width,height,width_one):
grid_d= Image.new("RGB", (grid.width,grid.height), "white")
grid_d.paste(grid,(0,0))
def get_font(fontsize):
try:
from fonts.ttf import Roboto
try:
return ImageFont.truetype(opts.font or Roboto, fontsize)
except Exception:
return ImageFont.truetype(Roboto, fontsize)
except Exception:
try:
return ImageFont.truetype(shared.opts.font or 'javascript/roboto.ttf', fontsize)
except Exception:
return ImageFont.truetype('javascript/roboto.ttf', fontsize)
d= ImageDraw.Draw(grid_d)
color_active = (0, 0, 0)
fontsize = (width+height)//25
fnt = get_font(fontsize)
if grid.width != width_one:
while d.multiline_textsize(text, font=fnt)[0] > width_one*0.75 and fontsize > 0:
fontsize -=1
fnt = get_font(fontsize)
d.multiline_text((0,0), text, font=fnt, fill=color_active,align="center")
return grid_d
def wpreseter(w,presets):
if "," not in w and w != "":
presets=presets.splitlines()
wdict={}
for l in presets:
if ":" in l :
key = l.split(":",1)[0]
wdict[key.strip()]=l.split(":",1)[1]
if "\t" in l:
key = l.split("\t",1)[0]
wdict[key.strip()]=l.split("\t",1)[1]
if w.strip() in wdict:
name = w
w = wdict[w.strip()]
print(f"weights {name} imported from presets : {w}")
return w
def fullpathfromname(name):
if hash == "" or hash ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
return checkpoint_info.filename
def namefromhash(hash):
if hash == "" or hash ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(hash)
return checkpoint_info.model_name
def hashfromname(name):
from modules import sd_models
if name == "" or name ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
if checkpoint_info.shorthash is not None:
return checkpoint_info.shorthash
return checkpoint_info.calculate_shorthash()
def longhashfromname(name):
from modules import sd_models
if name == "" or name ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
if checkpoint_info.sha256 is not None:
return checkpoint_info.sha256
checkpoint_info.calculate_shorthash()
return checkpoint_info.sha256
def simggen(prompt, nprompt, steps, sampler, cfg, seed, w, h,genoptions,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size,mergeinfo="",id_sets=[],modelid = "no id"):
shared.state.begin()
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
do_not_reload_embeddings=True,
)
p.batch_size = int(batch_size)
p.prompt = prompt
p.negative_prompt = nprompt
p.steps = steps
p.sampler_name = sd_samplers.samplers[sampler].name
p.cfg_scale = cfg
p.seed = seed
p.width = w
p.height = h
p.seed_resize_from_w=0
p.seed_resize_from_h=0
p.denoising_strength=None
#"Restore faces", "Tiling", "Hires. fix"
if "Hires. fix" in genoptions:
p.enable_hr = True
p.denoising_strength = denoise_str
p.hr_upscaler = hrupscaler
p.hr_second_pass_steps = hr2ndsteps
p.hr_scale = hr_scale
if "Tiling" in genoptions:
p.tiling = True
if "Restore faces" in genoptions:
p.restore_faces = True
if type(p.prompt) == list:
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
else:
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
if type(p.negative_prompt) == list:
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
else:
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
processed:Processed = processing.process_images(p)
if "image" in id_sets:
for i, image in enumerate(processed.images):
processed.images[i] = draw_origin(image, str(modelid),w,h,w)
if "PNG info" in id_sets:mergeinfo = mergeinfo + " ID " + str(modelid)
infotext = create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds)
if infotext.count("Steps: ")>1:
infotext = infotext[:infotext.rindex("Steps")]
infotexts = infotext.split(",")
for i,x in enumerate(infotexts):
if "Model:"in x:
infotexts[i] = " Model: "+mergeinfo.replace(","," ")
infotext= ",".join(infotexts)
for i, image in enumerate(processed.images):
images.save_image(image, opts.outdir_txt2img_samples, "",p.seed, p.prompt,shared.opts.samples_format, p=p,info=infotext)
if batch_size > 1:
grid = images.image_grid(processed.images, p.batch_size)
processed.images.insert(0, grid)
images.save_image(grid, opts.outdir_txt2img_grids, "grid", p.seed, p.prompt, opts.grid_format, info=infotext, short_filename=not opts.grid_extended_filename, p=p, grid=True)
shared.state.end()
return processed.images,infotext,plaintext_to_html(processed.info), plaintext_to_html(processed.comments),p