File size: 31,652 Bytes
34097e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 |
from linecache import clearcache
import os
import gc
import numpy as np
import os.path
import re
import torch
import tqdm
import datetime
import csv
import json
import torch.nn as nn
import scipy.ndimage
from scipy.ndimage.filters import median_filter as filter
from PIL import Image, ImageFont, ImageDraw
from tqdm import tqdm
from modules import shared, processing, sd_models, images, sd_samplers,scripts
from modules.ui import plaintext_to_html
from modules.shared import opts
from modules.processing import create_infotext,Processed
from modules.sd_models import load_model,checkpoints_loaded
from scripts.mergers.model_util import usemodelgen,filenamecutter,savemodel
from inspect import currentframe
stopmerge = False
def freezemtime():
global stopmerge
stopmerge = True
mergedmodel=[]
TYPESEG = ["none","alpha","beta (if Triple or Twice is not selected,Twice automatically enable)","alpha and beta","seed", "mbw alpha","mbw beta","mbw alpha and beta", "model_A","model_B","model_C","pinpoint blocks (alpha or beta must be selected for another axis)","elemental","pinpoint element","effective elemental checker","tensors","calcmode","prompt"]
TYPES = ["none","alpha","beta","alpha and beta","seed", "mbw alpha ","mbw beta","mbw alpha and beta", "model_A","model_B","model_C","pinpoint blocks","elemental","pinpoint element","effective","tensor","calcmode","prompt"]
MODES=["Weight" ,"Add" ,"Triple","Twice"]
SAVEMODES=["save model", "overwrite"]
#type[0:aplha,1:beta,2:seed,3:mbw,4:model_A,5:model_B,6:model_C]
#msettings=[0 weights_a,1 weights_b,2 model_a,3 model_b,4 model_c,5 base_alpha,6 base_beta,7 mode,8 useblocks,9 custom_name,10 save_sets,11 id_sets,12 wpresets]
#id sets "image", "PNG info","XY grid"
hear = False
hearm = False
non4 = [None]*4
def caster(news,hear):
if hear: print(news)
def casterr(*args,hear=hear):
if hear:
names = {id(v): k for k, v in currentframe().f_back.f_locals.items()}
print('\n'.join([names.get(id(arg), '???') + ' = ' + repr(arg) for arg in args]))
#msettings=[weights_a,weights_b,model_a,model_b,model_c,device,base_alpha,base_beta,mode,loranames,useblocks,custom_name,save_sets,id_sets,wpresets,deep]
def smergegen(weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,
calcmode,useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,
esettings,
prompt,nprompt,steps,sampler,cfg,seed,w,h,
hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size,
currentmodel,imggen):
deepprint = True if "print change" in esettings else False
result,currentmodel,modelid,theta_0,metadata = smerge(
weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,calcmode,
useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,deepprint=deepprint
)
if "ERROR" in result or "STOPPED" in result:
return result,"not loaded",*non4
usemodelgen(theta_0,model_a,currentmodel)
save = True if SAVEMODES[0] in save_sets else False
result = savemodel(theta_0,currentmodel,custom_name,save_sets,model_a,metadata) if save else "Merged model loaded:"+currentmodel
del theta_0
gc.collect()
if imggen :
images = simggen(prompt,nprompt,steps,sampler,cfg,seed,w,h,hireson,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size,currentmodel,id_sets,modelid)
return result,currentmodel,*images[:4]
else:
return result,currentmodel
NUM_INPUT_BLOCKS = 12
NUM_MID_BLOCK = 1
NUM_OUTPUT_BLOCKS = 12
NUM_TOTAL_BLOCKS = NUM_INPUT_BLOCKS + NUM_MID_BLOCK + NUM_OUTPUT_BLOCKS
blockid=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
def smerge(weights_a,weights_b,model_a,model_b,model_c,base_alpha,base_beta,mode,calcmode,
useblocks,custom_name,save_sets,id_sets,wpresets,deep,tensor,deepprint = False):
caster("merge start",hearm)
global hear,mergedmodel,stopmerge
stopmerge = False
gc.collect()
# for from file
if type(useblocks) is str:
useblocks = True if useblocks =="True" else False
if type(base_alpha) == str:base_alpha = float(base_alpha)
if type(base_beta) == str:base_beta = float(base_beta)
weights_a_orig = weights_a
weights_b_orig = weights_b
# preset to weights
if wpresets != False and useblocks:
weights_a = wpreseter(weights_a,wpresets)
weights_b = wpreseter(weights_b,wpresets)
# mode select booleans
save = True if SAVEMODES[0] in save_sets else False
usebeta = MODES[2] in mode or MODES[3] in mode or calcmode == "tensor"
save_metadata = "save metadata" in save_sets
metadata = {"format": "pt"}
if not useblocks:
weights_a = weights_b = ""
#for save log and save current model
mergedmodel =[weights_a,weights_b,
hashfromname(model_a),hashfromname(model_b),hashfromname(model_c),
base_alpha,base_beta,mode,useblocks,custom_name,save_sets,id_sets,deep,calcmode,tensor].copy()
model_a = namefromhash(model_a)
model_b = namefromhash(model_b)
model_c = namefromhash(model_c)
theta_2 = {}
caster(mergedmodel,False)
if len(deep) > 0:
deep = deep.replace("\n",",")
deep = deep.split(",")
#format check
if model_a =="" or model_b =="" or ((not MODES[0] in mode) and model_c=="") :
return "ERROR: Necessary model is not selected",*non4
#for MBW text to list
if useblocks:
weights_a_t=weights_a.split(',',1)
weights_b_t=weights_b.split(',',1)
base_alpha = float(weights_a_t[0])
weights_a = [float(w) for w in weights_a_t[1].split(',')]
caster(f"from {weights_a_t}, alpha = {base_alpha},weights_a ={weights_a}",hearm)
if len(weights_a) != 25:return f"ERROR: weights alpha value must be {26}.",*non4
if usebeta:
base_beta = float(weights_b_t[0])
weights_b = [float(w) for w in weights_b_t[1].split(',')]
caster(f"from {weights_b_t}, beta = {base_beta},weights_a ={weights_b}",hearm)
if len(weights_b) != 25: return f"ERROR: weights beta value must be {26}.",*non4
caster("model load start",hearm)
print(f" model A \t: {model_a}")
print(f" model B \t: {model_b}")
print(f" model C \t: {model_c}")
print(f" alpha,beta\t: {base_alpha,base_beta}")
print(f" weights_alpha\t: {weights_a}")
print(f" weights_beta\t: {weights_b}")
print(f" mode\t\t: {mode}")
print(f" MBW \t\t: {useblocks}")
print(f" CalcMode \t: {calcmode}")
print(f" Elemental \t: {deep}")
print(f" Tensors \t: {tensor}")
theta_1=load_model_weights_m(model_b,False,True,save).copy()
if MODES[1] in mode:#Add
if stopmerge: return "STOPPED", *non4
theta_2 = load_model_weights_m(model_c,False,False,save).copy()
for key in tqdm(theta_1.keys()):
if 'model' in key:
if key in theta_2:
t2 = theta_2.get(key, torch.zeros_like(theta_1[key]))
theta_1[key] = theta_1[key]- t2
else:
theta_1[key] = torch.zeros_like(theta_1[key])
del theta_2
if stopmerge: return "STOPPED", *non4
if calcmode == "tensor":
theta_t = load_model_weights_m(model_a,True,False,save).copy()
theta_0 ={}
for key in theta_t:
theta_0[key] = theta_t[key].clone()
del theta_t
else:
theta_0=load_model_weights_m(model_a,True,False,save).copy()
if MODES[2] in mode or MODES[3] in mode:#Tripe or Twice
theta_2 = load_model_weights_m(model_c,False,False,save).copy()
alpha = base_alpha
beta = base_beta
re_inp = re.compile(r'\.input_blocks\.(\d+)\.') # 12
re_mid = re.compile(r'\.middle_block\.(\d+)\.') # 1
re_out = re.compile(r'\.output_blocks\.(\d+)\.') # 12
chckpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"]
count_target_of_basealpha = 0
if calcmode =="cosineA": #favors modelA's structure with details from B
if stopmerge: return "STOPPED", *non4
sim = torch.nn.CosineSimilarity(dim=0)
sims = np.array([], dtype=np.float64)
for key in (tqdm(theta_0.keys(), desc="Stage 0/2")):
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_1:
theta_0_norm = nn.functional.normalize(theta_0[key].to(torch.float32), p=2, dim=0)
theta_1_norm = nn.functional.normalize(theta_1[key].to(torch.float32), p=2, dim=0)
simab = sim(theta_0_norm, theta_1_norm)
sims = np.append(sims,simab.numpy())
sims = sims[~np.isnan(sims)]
sims = np.delete(sims, np.where(sims<np.percentile(sims, 1 ,method = 'midpoint')))
sims = np.delete(sims, np.where(sims>np.percentile(sims, 99 ,method = 'midpoint')))
if calcmode =="cosineB": #favors modelB's structure with details from A
if stopmerge: return "STOPPED", *non4
sim = torch.nn.CosineSimilarity(dim=0)
sims = np.array([], dtype=np.float64)
for key in (tqdm(theta_0.keys(), desc="Stage 0/2")):
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_1:
simab = sim(theta_0[key].to(torch.float32), theta_1[key].to(torch.float32))
dot_product = torch.dot(theta_0[key].view(-1).to(torch.float32), theta_1[key].view(-1).to(torch.float32))
magnitude_similarity = dot_product / (torch.norm(theta_0[key].to(torch.float32)) * torch.norm(theta_1[key].to(torch.float32)))
combined_similarity = (simab + magnitude_similarity) / 2.0
sims = np.append(sims, combined_similarity.numpy())
sims = sims[~np.isnan(sims)]
sims = np.delete(sims, np.where(sims < np.percentile(sims, 1, method='midpoint')))
sims = np.delete(sims, np.where(sims > np.percentile(sims, 99, method='midpoint')))
for key in (tqdm(theta_0.keys(), desc="Stage 1/2") if not False else theta_0.keys()):
if stopmerge: return "STOPPED", *non4
if "model" in key and key in theta_1:
if usebeta and (not key in theta_2) and (not theta_2 == {}) :
continue
weight_index = -1
current_alpha = alpha
current_beta = beta
if key in chckpoint_dict_skip_on_merge:
continue
# check weighted and U-Net or not
if weights_a is not None and 'model.diffusion_model.' in key:
# check block index
weight_index = -1
if 'time_embed' in key:
weight_index = 0 # before input blocks
elif '.out.' in key:
weight_index = NUM_TOTAL_BLOCKS - 1 # after output blocks
else:
m = re_inp.search(key)
if m:
inp_idx = int(m.groups()[0])
weight_index = inp_idx
else:
m = re_mid.search(key)
if m:
weight_index = NUM_INPUT_BLOCKS
else:
m = re_out.search(key)
if m:
out_idx = int(m.groups()[0])
weight_index = NUM_INPUT_BLOCKS + NUM_MID_BLOCK + out_idx
if weight_index >= NUM_TOTAL_BLOCKS:
print(f"ERROR: illegal block index: {key}")
return f"ERROR: illegal block index: {key}",*non4
if weight_index >= 0 and useblocks:
current_alpha = weights_a[weight_index]
if usebeta: current_beta = weights_b[weight_index]
else:
count_target_of_basealpha = count_target_of_basealpha + 1
if len(deep) > 0:
skey = key + blockid[weight_index+1]
for d in deep:
if d.count(":") != 2 :continue
dbs,dws,dr = d.split(":")[0],d.split(":")[1],d.split(":")[2]
dbs,dws = dbs.split(" "), dws.split(" ")
dbn,dbs = (True,dbs[1:]) if dbs[0] == "NOT" else (False,dbs)
dwn,dws = (True,dws[1:]) if dws[0] == "NOT" else (False,dws)
flag = dbn
for db in dbs:
if db in skey:
flag = not dbn
if flag:flag = dwn
else:continue
for dw in dws:
if dw in skey:
flag = not dwn
if flag:
dr = float(dr)
if deepprint :print(dbs,dws,key,dr)
current_alpha = dr
if calcmode == "normal":
if MODES[1] in mode:#Add
caster(f"model A[{key}] + {current_alpha} + * (model B - model C)[{key}]",hear)
theta_0[key] = theta_0[key] + current_alpha * theta_1[key]
elif MODES[2] in mode:#Triple
caster(f"model A[{key}] + {1-current_alpha-current_beta} + model B[{key}]*{current_alpha} + model C[{key}]*{current_beta}",hear)
theta_0[key] = (1 - current_alpha-current_beta) * theta_0[key] + current_alpha * theta_1[key]+current_beta * theta_2[key]
elif MODES[3] in mode:#Twice
caster(f"model A[{key}] + {1-current_alpha} + * model B[{key}]*{alpha}",hear)
caster(f"model A+B[{key}] + {1-current_beta} + * model C[{key}]*{beta}",hear)
theta_0[key] = (1 - current_alpha) * theta_0[key] + current_alpha * theta_1[key]
theta_0[key] = (1 - current_beta) * theta_0[key] + current_beta * theta_2[key]
else:#Weight
if current_alpha == 1:
caster(f"alpha = 0,model A[{key}=model B[{key}",hear)
theta_0[key] = theta_1[key]
elif current_alpha !=0:
caster(f"model A[{key}] + {1-current_alpha} + * (model B)[{key}]*{alpha}",hear)
theta_0[key] = (1 - current_alpha) * theta_0[key] + current_alpha * theta_1[key]
elif calcmode == "cosineA": #favors modelA's structure with details from B
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_0:
# Normalize the vectors before merging
theta_0_norm = nn.functional.normalize(theta_0[key].to(torch.float32), p=2, dim=0)
theta_1_norm = nn.functional.normalize(theta_1[key].to(torch.float32), p=2, dim=0)
simab = sim(theta_0_norm, theta_1_norm)
dot_product = torch.dot(theta_0_norm.view(-1), theta_1_norm.view(-1))
magnitude_similarity = dot_product / (torch.norm(theta_0_norm) * torch.norm(theta_1_norm))
combined_similarity = (simab + magnitude_similarity) / 2.0
k = (combined_similarity - sims.min()) / (sims.max() - sims.min())
k = k - current_alpha
k = k.clip(min=.0,max=1.)
caster(f"model A[{key}] + {1-k} + * (model B)[{key}]*{k}",hear)
theta_0[key] = theta_1[key] * (1 - k) + theta_0[key] * k
elif calcmode == "cosineB": #favors modelB's structure with details from A
# skip VAE model parameters to get better results
if "first_stage_model" in key: continue
if "model" in key and key in theta_0:
simab = sim(theta_0[key].to(torch.float32), theta_1[key].to(torch.float32))
dot_product = torch.dot(theta_0[key].view(-1).to(torch.float32), theta_1[key].view(-1).to(torch.float32))
magnitude_similarity = dot_product / (torch.norm(theta_0[key].to(torch.float32)) * torch.norm(theta_1[key].to(torch.float32)))
combined_similarity = (simab + magnitude_similarity) / 2.0
k = (combined_similarity - sims.min()) / (sims.max() - sims.min())
k = k - current_alpha
k = k.clip(min=.0,max=1.)
caster(f"model A[{key}] + {1-k} + * (model B)[{key}]*{k}",hear)
theta_0[key] = theta_1[key] * (1 - k) + theta_0[key] * k
elif calcmode == "smoothAdd":
caster(f"model A[{key}] + {current_alpha} + * (model B - model C)[{key}]", hear)
# Apply median filter to the weight differences
filtered_diff = scipy.ndimage.median_filter(theta_1[key].to(torch.float32).cpu().numpy(), size=3)
# Apply Gaussian filter to the filtered differences
filtered_diff = scipy.ndimage.gaussian_filter(filtered_diff, sigma=1)
theta_1[key] = torch.tensor(filtered_diff)
# Add the filtered differences to the original weights
theta_0[key] = theta_0[key] + current_alpha * theta_1[key]
elif calcmode == "tensor":
dim = theta_0[key].dim()
if dim == 0 : continue
if current_alpha+current_beta <= 1 :
talphas = int(theta_0[key].shape[0]*(current_beta))
talphae = int(theta_0[key].shape[0]*(current_alpha+current_beta))
if dim == 1:
theta_0[key][talphas:talphae] = theta_1[key][talphas:talphae].clone()
elif dim == 2:
theta_0[key][talphas:talphae,:] = theta_1[key][talphas:talphae,:].clone()
elif dim == 3:
theta_0[key][talphas:talphae,:,:] = theta_1[key][talphas:talphae,:,:].clone()
elif dim == 4:
theta_0[key][talphas:talphae,:,:,:] = theta_1[key][talphas:talphae,:,:,:].clone()
else:
talphas = int(theta_0[key].shape[0]*(current_alpha+current_beta-1))
talphae = int(theta_0[key].shape[0]*(current_beta))
theta_t = theta_1[key].clone()
if dim == 1:
theta_t[talphas:talphae] = theta_0[key][talphas:talphae].clone()
elif dim == 2:
theta_t[talphas:talphae,:] = theta_0[key][talphas:talphae,:].clone()
elif dim == 3:
theta_t[talphas:talphae,:,:] = theta_0[key][talphas:talphae,:,:].clone()
elif dim == 4:
theta_t[talphas:talphae,:,:,:] = theta_0[key][talphas:talphae,:,:,:].clone()
theta_0[key] = theta_t
currentmodel = makemodelname(weights_a,weights_b,model_a, model_b,model_c, base_alpha,base_beta,useblocks,mode)
for key in tqdm(theta_1.keys(), desc="Stage 2/2"):
if key in chckpoint_dict_skip_on_merge:
continue
if "model" in key and key not in theta_0:
theta_0.update({key:theta_1[key]})
del theta_1
modelid = rwmergelog(currentmodel,mergedmodel)
caster(mergedmodel,False)
if save_metadata:
merge_recipe = {
"type": "sd-webui-supermerger",
"weights_alpha": weights_a if useblocks else None,
"weights_beta": weights_b if useblocks else None,
"weights_alpha_orig": weights_a_orig if useblocks else None,
"weights_beta_orig": weights_b_orig if useblocks else None,
"model_a": longhashfromname(model_a),
"model_b": longhashfromname(model_b),
"model_c": longhashfromname(model_c),
"base_alpha": base_alpha,
"base_beta": base_beta,
"mode": mode,
"mbw": useblocks,
"elemental_merge": deep,
"calcmode" : calcmode
}
metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
metadata["sd_merge_models"] = {}
def add_model_metadata(checkpoint_name):
checkpoint_info = sd_models.get_closet_checkpoint_match(checkpoint_name)
checkpoint_info.calculate_shorthash()
metadata["sd_merge_models"][checkpoint_info.sha256] = {
"name": checkpoint_name,
"legacy_hash": checkpoint_info.hash
}
#metadata["sd_merge_models"].update(checkpoint_info.metadata.get("sd_merge_models", {}))
if model_a:
add_model_metadata(model_a)
if model_b:
add_model_metadata(model_b)
if model_c:
add_model_metadata(model_c)
metadata["sd_merge_models"] = json.dumps(metadata["sd_merge_models"])
return "",currentmodel,modelid,theta_0,metadata
def forkforker(filename):
try:
return sd_models.read_state_dict(filename,"cuda")
except:
return sd_models.read_state_dict(filename)
def load_model_weights_m(model,model_a,model_b,save):
checkpoint_info = sd_models.get_closet_checkpoint_match(model)
sd_model_name = checkpoint_info.model_name
cachenum = shared.opts.sd_checkpoint_cache
if save:
if model_a:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from file")
return forkforker(checkpoint_info.filename)
if checkpoint_info in checkpoints_loaded:
print(f"Loading weights [{sd_model_name}] from cache")
return checkpoints_loaded[checkpoint_info]
elif cachenum>0 and model_a:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from cache")
return checkpoints_loaded[checkpoint_info]
elif cachenum>1 and model_b:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from cache")
return checkpoints_loaded[checkpoint_info]
elif cachenum>2:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from cache")
return checkpoints_loaded[checkpoint_info]
else:
if model_a:
load_model(checkpoint_info)
print(f"Loading weights [{sd_model_name}] from file")
return forkforker(checkpoint_info.filename)
def makemodelname(weights_a,weights_b,model_a, model_b,model_c, alpha,beta,useblocks,mode):
model_a=filenamecutter(model_a)
model_b=filenamecutter(model_b)
model_c=filenamecutter(model_c)
if type(alpha) == str:alpha = float(alpha)
if type(beta)== str:beta = float(beta)
if useblocks:
if MODES[1] in mode:#add
currentmodel =f"{model_a} + ({model_b} - {model_c}) x alpha ({str(round(alpha,3))},{','.join(str(s) for s in weights_a)}"
elif MODES[2] in mode:#triple
currentmodel =f"{model_a} x (1-alpha-beta) + {model_b} x alpha + {model_c} x beta (alpha = {str(round(alpha,3))},{','.join(str(s) for s in weights_a)},beta = {beta},{','.join(str(s) for s in weights_b)})"
elif MODES[3] in mode:#twice
currentmodel =f"({model_a} x (1-alpha) + {model_b} x alpha)x(1-beta)+ {model_c} x beta ({str(round(alpha,3))},{','.join(str(s) for s in weights_a)})_({str(round(beta,3))},{','.join(str(s) for s in weights_b)})"
else:
currentmodel =f"{model_a} x (1-alpha) + {model_b} x alpha ({str(round(alpha,3))},{','.join(str(s) for s in weights_a)})"
else:
if MODES[1] in mode:#add
currentmodel =f"{model_a} + ({model_b} - {model_c}) x {str(round(alpha,3))}"
elif MODES[2] in mode:#triple
currentmodel =f"{model_a} x {str(round(1-alpha-beta,3))} + {model_b} x {str(round(alpha,3))} + {model_c} x {str(round(beta,3))}"
elif MODES[3] in mode:#twice
currentmodel =f"({model_a} x {str(round(1-alpha,3))} +{model_b} x {str(round(alpha,3))}) x {str(round(1-beta,3))} + {model_c} x {str(round(beta,3))}"
else:
currentmodel =f"{model_a} x {str(round(1-alpha,3))} + {model_b} x {str(round(alpha,3))}"
return currentmodel
path_root = scripts.basedir()
def rwmergelog(mergedname = "",settings= [],id = 0):
setting = settings.copy()
filepath = os.path.join(path_root, "mergehistory.csv")
is_file = os.path.isfile(filepath)
if not is_file:
with open(filepath, 'a') as f:
#msettings=[0 weights_a,1 weights_b,2 model_a,3 model_b,4 model_c,5 base_alpha,6 base_beta,7 mode,8 useblocks,9 custom_name,10 save_sets,11 id_sets, 12 deep 13 calcmode]
f.writelines('"ID","time","name","weights alpha","weights beta","model A","model B","model C","alpha","beta","mode","use MBW","plus lora","custum name","save setting","use ID"\n')
with open(filepath, 'r+') as f:
reader = csv.reader(f)
mlist = [raw for raw in reader]
if mergedname != "":
mergeid = len(mlist)
setting.insert(0,mergedname)
for i,x in enumerate(setting):
if "," in str(x):setting[i] = f'"{str(setting[i])}"'
text = ",".join(map(str, setting))
text=str(mergeid)+","+datetime.datetime.now().strftime('%Y.%m.%d %H.%M.%S.%f')[:-7]+"," + text + "\n"
f.writelines(text)
return mergeid
try:
out = mlist[int(id)]
except:
out = "ERROR: OUT of ID index"
return out
def draw_origin(grid, text,width,height,width_one):
grid_d= Image.new("RGB", (grid.width,grid.height), "white")
grid_d.paste(grid,(0,0))
def get_font(fontsize):
try:
from fonts.ttf import Roboto
try:
return ImageFont.truetype(opts.font or Roboto, fontsize)
except Exception:
return ImageFont.truetype(Roboto, fontsize)
except Exception:
try:
return ImageFont.truetype(shared.opts.font or 'javascript/roboto.ttf', fontsize)
except Exception:
return ImageFont.truetype('javascript/roboto.ttf', fontsize)
d= ImageDraw.Draw(grid_d)
color_active = (0, 0, 0)
fontsize = (width+height)//25
fnt = get_font(fontsize)
if grid.width != width_one:
while d.multiline_textsize(text, font=fnt)[0] > width_one*0.75 and fontsize > 0:
fontsize -=1
fnt = get_font(fontsize)
d.multiline_text((0,0), text, font=fnt, fill=color_active,align="center")
return grid_d
def wpreseter(w,presets):
if "," not in w and w != "":
presets=presets.splitlines()
wdict={}
for l in presets:
if ":" in l :
key = l.split(":",1)[0]
wdict[key.strip()]=l.split(":",1)[1]
if "\t" in l:
key = l.split("\t",1)[0]
wdict[key.strip()]=l.split("\t",1)[1]
if w.strip() in wdict:
name = w
w = wdict[w.strip()]
print(f"weights {name} imported from presets : {w}")
return w
def fullpathfromname(name):
if hash == "" or hash ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
return checkpoint_info.filename
def namefromhash(hash):
if hash == "" or hash ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(hash)
return checkpoint_info.model_name
def hashfromname(name):
from modules import sd_models
if name == "" or name ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
if checkpoint_info.shorthash is not None:
return checkpoint_info.shorthash
return checkpoint_info.calculate_shorthash()
def longhashfromname(name):
from modules import sd_models
if name == "" or name ==[]: return ""
checkpoint_info = sd_models.get_closet_checkpoint_match(name)
if checkpoint_info.sha256 is not None:
return checkpoint_info.sha256
checkpoint_info.calculate_shorthash()
return checkpoint_info.sha256
def simggen(prompt, nprompt, steps, sampler, cfg, seed, w, h,genoptions,hrupscaler,hr2ndsteps,denoise_str,hr_scale,batch_size,mergeinfo="",id_sets=[],modelid = "no id"):
shared.state.begin()
p = processing.StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model,
do_not_save_grid=True,
do_not_save_samples=True,
do_not_reload_embeddings=True,
)
p.batch_size = int(batch_size)
p.prompt = prompt
p.negative_prompt = nprompt
p.steps = steps
p.sampler_name = sd_samplers.samplers[sampler].name
p.cfg_scale = cfg
p.seed = seed
p.width = w
p.height = h
p.seed_resize_from_w=0
p.seed_resize_from_h=0
p.denoising_strength=None
#"Restore faces", "Tiling", "Hires. fix"
if "Hires. fix" in genoptions:
p.enable_hr = True
p.denoising_strength = denoise_str
p.hr_upscaler = hrupscaler
p.hr_second_pass_steps = hr2ndsteps
p.hr_scale = hr_scale
if "Tiling" in genoptions:
p.tiling = True
if "Restore faces" in genoptions:
p.restore_faces = True
if type(p.prompt) == list:
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, p.styles) for x in p.prompt]
else:
p.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(p.prompt, p.styles)]
if type(p.negative_prompt) == list:
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, p.styles) for x in p.negative_prompt]
else:
p.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(p.negative_prompt, p.styles)]
processed:Processed = processing.process_images(p)
if "image" in id_sets:
for i, image in enumerate(processed.images):
processed.images[i] = draw_origin(image, str(modelid),w,h,w)
if "PNG info" in id_sets:mergeinfo = mergeinfo + " ID " + str(modelid)
infotext = create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds)
if infotext.count("Steps: ")>1:
infotext = infotext[:infotext.rindex("Steps")]
infotexts = infotext.split(",")
for i,x in enumerate(infotexts):
if "Model:"in x:
infotexts[i] = " Model: "+mergeinfo.replace(","," ")
infotext= ",".join(infotexts)
for i, image in enumerate(processed.images):
images.save_image(image, opts.outdir_txt2img_samples, "",p.seed, p.prompt,shared.opts.samples_format, p=p,info=infotext)
if batch_size > 1:
grid = images.image_grid(processed.images, p.batch_size)
processed.images.insert(0, grid)
images.save_image(grid, opts.outdir_txt2img_grids, "grid", p.seed, p.prompt, opts.grid_format, info=infotext, short_filename=not opts.grid_extended_filename, p=p, grid=True)
shared.state.end()
return processed.images,infotext,plaintext_to_html(processed.info), plaintext_to_html(processed.comments),p
|