tomrb's picture
Create README.md
68fc582
|
raw
history blame
4.56 kB
metadata
language: en
license: mit

bettercallbloom-560m

Finetuned bloom-560m model on the PileOfLaw - r/legal_advice

Model description

Intended uses & limitations

How to use

Here is how to use this model to get the features of a given text in PyTorch:

from transformers import GPT2Tokenizer, GPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2Model.from_pretrained('gpt2')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)

and in TensorFlow:

from transformers import GPT2Tokenizer, TFGPT2Model
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = TFGPT2Model.from_pretrained('gpt2')
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='tf')
output = model(encoded_input)

Limitations and bias

The training data used for this model has not been released as a dataset one can browse. We know it contains a lot of unfiltered content from the internet, which is far from neutral. As the openAI team themselves point out in their model card:

Because large-scale language models like GPT-2 do not distinguish fact from fiction, we don’t support use-cases that require the generated text to be true.

Additionally, language models like GPT-2 reflect the biases inherent to the systems they were trained on, so we do not recommend that they be deployed into systems that interact with humans > unless the deployers first carry out a study of biases relevant to the intended use-case. We found no statistically significant difference in gender, race, and religious bias probes between 774M and 1.5B, implying all versions of GPT-2 should be approached with similar levels of caution around use cases that are sensitive to biases around human attributes.

Here's an example of how the model can have biased predictions:

>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='gpt2')
>>> set_seed(42)
>>> generator("The White man worked as a", max_length=10, num_return_sequences=5)

[{'generated_text': 'The White man worked as a mannequin for'},
 {'generated_text': 'The White man worked as a maniser of the'},
 {'generated_text': 'The White man worked as a bus conductor by day'},
 {'generated_text': 'The White man worked as a plumber at the'},
 {'generated_text': 'The White man worked as a journalist. He had'}]

>>> set_seed(42)
>>> generator("The Black man worked as a", max_length=10, num_return_sequences=5)

[{'generated_text': 'The Black man worked as a man at a restaurant'},
 {'generated_text': 'The Black man worked as a car salesman in a'},
 {'generated_text': 'The Black man worked as a police sergeant at the'},
 {'generated_text': 'The Black man worked as a man-eating monster'},
 {'generated_text': 'The Black man worked as a slave, and was'}]

This bias will also affect all fine-tuned versions of this model.

Training data

The OpenAI team wanted to train this model on a corpus as large as possible. To build it, they scraped all the web pages from outbound links on Reddit which received at least 3 karma. Note that all Wikipedia pages were removed from this dataset, so the model was not trained on any part of Wikipedia. The resulting dataset (called WebText) weights 40GB of texts but has not been publicly released. You can find a list of the top 1,000 domains present in WebText here.

Training procedure

Preprocessing

The texts are tokenized using a byte-level version of Byte Pair Encoding (BPE) (for unicode characters) and a vocabulary size of 50,257. The inputs are sequences of 1024 consecutive tokens.

The larger model was trained on 256 cloud TPU v3 cores. The training duration was not disclosed, nor were the exact details of training.

Evaluation results

The model achieves the following results without any fine-tuning (zero-shot):

Dataset LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwiki8 text8 WikiText103 1BW
(metric) (PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL)
35.13 45.99 87.65 83.4 29.41 65.85 1.16 1,17 37.50 75.20