Pythia Alpaca LoRA
Collection
4 items
•
Updated
axolotl version: 0.4.1
base_model: EleutherAI/pythia-1.4b-deduped
load_in_8bit: true
datasets:
- path: teknium/GPT4-LLM-Cleaned
type: alpaca
dataset_prepared_path:
val_set_size: 0.05
adapter: lora
lora_model_dir:
sequence_len: 512
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- query_key_value
- dense
- dense_h_to_4h
- dense_4h_to_h
lora_target_linear:
lora_fan_in_fan_out: true # pythia/GPTNeoX lora specific
wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
output_dir: ./outputs/lora-alpaca-pythia
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 4
learning_rate: 0.00001
train_on_inputs: false
group_by_length: false
bf16: auto
tf32: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
weight_decay: 0.1
evals_per_epoch: 4
logging_steps: 1
push_to_hub: tommyp111/pythia-1.4b-deduped-alpaca-lora
wandb_project: pythia-alpaca-lora
wandb_name: pythia-1.4b
This model is a fine-tuned version of EleutherAI/pythia-1.4b-deduped on the None dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.5363 | 0.0001 | 1 | 2.6674 |
1.2474 | 0.25 | 3190 | 1.4167 |
1.3556 | 0.5 | 6380 | 1.3586 |
1.2912 | 0.75 | 9570 | 1.3302 |
1.2149 | 1.0 | 12760 | 1.3089 |
1.6017 | 1.25 | 15950 | 1.2917 |
1.1827 | 1.5 | 19140 | 1.2827 |
0.9565 | 1.75 | 22330 | 1.2739 |
1.2363 | 2.0 | 25520 | 1.2674 |
1.3477 | 2.25 | 28710 | 1.2596 |
1.6589 | 2.5 | 31900 | 1.2571 |
1.1538 | 2.75 | 35090 | 1.2530 |
1.5866 | 3.0 | 38280 | 1.2473 |
1.0768 | 3.25 | 41470 | 1.2464 |
1.4019 | 3.5 | 44660 | 1.2452 |
1.1724 | 3.75 | 47850 | 1.2434 |
1.3227 | 4.0 | 51040 | 1.2444 |
Base model
EleutherAI/pythia-1.4b-deduped