metadata
library_name: transformers
tags: []
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("tomg-group-umd/step-00047360-recurrence_full_512_0", trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained("tomg-group-umd/step-00047360-recurrence_full_512_0")
device=torch.device("cuda:0")
input_ids = tokenizer.encode("The capital of Westphalia is", return_tensors="pt", add_special_tokens=True).to(device)[:, :-1]
model.eval()
model.to(device)
model(input_ids)
# or, more efficiently
amp_settings = {"device_type": "cuda", "enabled": True, "dtype": torch.bfloat16}
if not amp_settings["enabled"]:
torch.backends.cuda.enable_math_sdp(True)
with torch.autocast(**amp_settings), torch.no_grad():
model(input_ids=input_ids)
###### Caching:
# first step:
past_key_values = None
outputs = model(input_ids=input_ids, use_cache=True, past_key_values=past_key_values)
past_key_values = outputs.past_key_values
# next step
outputs = model(input_ids=input_ids, use_cache=True, past_key_values=past_key_values)
######## Generate?
with torch.autocast(**amp_settings), torch.no_grad():
model.generate(input_ids)