static-bert-uncased-gooaq / train_script.py
tomaarsen's picture
tomaarsen HF staff
Create train_script.py
f32d520 verified
import random
import logging
from datasets import load_dataset, Dataset
from sentence_transformers import (
SentenceTransformer,
SentenceTransformerTrainer,
SentenceTransformerTrainingArguments,
SentenceTransformerModelCardData,
)
from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss
from sentence_transformers.training_args import BatchSamplers
from sentence_transformers.evaluation import InformationRetrievalEvaluator, SequentialEvaluator
from sentence_transformers.models.StaticEmbedding import StaticEmbedding
from transformers import AutoTokenizer
from sentence_transformers.util import cos_sim
logging.basicConfig(
format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO
)
# 1. Load a model to finetune with 2. (Optional) model card data
static_embedding = StaticEmbedding(AutoTokenizer.from_pretrained("bert-base-uncased"), embedding_dim=1024)
model = SentenceTransformer(
modules=[static_embedding],
model_card_data=SentenceTransformerModelCardData(
language="en",
license="apache-2.0",
model_name="Static Embeddings with BERT uncased tokenizer finetuned on GooAQ pairs",
),
)
# 3. Load a dataset to finetune on
dataset = load_dataset("sentence-transformers/gooaq", split="train")
dataset = dataset.add_column("id", range(len(dataset)))
dataset_dict = dataset.train_test_split(test_size=10_000, seed=12)
train_dataset: Dataset = dataset_dict["train"]
eval_dataset: Dataset = dataset_dict["test"]
# 4. Define a loss function
loss = MultipleNegativesRankingLoss(model)
loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024])
# 5. (Optional) Specify training arguments
run_name = "static-bert-uncased-gooaq"
args = SentenceTransformerTrainingArguments(
# Required parameter:
output_dir=f"models/{run_name}",
# Optional training parameters:
num_train_epochs=1,
per_device_train_batch_size=2048,
per_device_eval_batch_size=2048,
learning_rate=2e-1,
warmup_ratio=0.1,
fp16=False, # Set to False if you get an error that your GPU can't run on FP16
bf16=True, # Set to True if you have a GPU that supports BF16
batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch
# Optional tracking/debugging parameters:
eval_strategy="steps",
eval_steps=250,
save_strategy="steps",
save_steps=250,
save_total_limit=2,
logging_steps=100,
logging_first_step=True,
run_name=run_name, # Will be used in W&B if `wandb` is installed
)
# 6. (Optional) Create an evaluator & evaluate the base model
# The full corpus, but only the evaluation queries
random.seed(12)
queries = dict(zip(eval_dataset["id"], eval_dataset["question"]))
corpus = (
{qid: dataset[qid]["answer"] for qid in queries} |
{qid: dataset[qid]["answer"] for qid in random.sample(range(len(dataset)), 20_000)}
)
relevant_docs = {qid: {qid} for qid in eval_dataset["id"]}
evaluators = []
for dim in loss.matryoshka_dims:
evaluators.append(InformationRetrievalEvaluator(
corpus=corpus,
queries=queries,
relevant_docs=relevant_docs,
show_progress_bar=True,
name=f"gooaq-{dim}-dev",
truncate_dim=dim,
score_functions={"cosine": cos_sim},
))
dev_evaluator = SequentialEvaluator(evaluators)
dev_evaluator(model)
# 7. Create a trainer & train
trainer = SentenceTransformerTrainer(
model=model,
args=args,
train_dataset=train_dataset.remove_columns("id"),
eval_dataset=eval_dataset.remove_columns("id"),
loss=loss,
evaluator=dev_evaluator,
)
trainer.train()
# (Optional) Evaluate the trained model on the evaluator after training
dev_evaluator(model)
# 8. Save the trained model
model.save_pretrained(f"models/{run_name}/final")
# 9. (Optional) Push it to the Hugging Face Hub
model.push_to_hub(run_name, private=True)