import random import logging from datasets import load_dataset, Dataset from sentence_transformers import ( SentenceTransformer, SentenceTransformerTrainer, SentenceTransformerTrainingArguments, SentenceTransformerModelCardData, ) from sentence_transformers.losses import MatryoshkaLoss, MultipleNegativesRankingLoss from sentence_transformers.training_args import BatchSamplers from sentence_transformers.evaluation import InformationRetrievalEvaluator, SequentialEvaluator from sentence_transformers.models.StaticEmbedding import StaticEmbedding from transformers import AutoTokenizer from sentence_transformers.util import cos_sim logging.basicConfig( format="%(asctime)s - %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=logging.INFO ) # 1. Load a model to finetune with 2. (Optional) model card data static_embedding = StaticEmbedding(AutoTokenizer.from_pretrained("bert-base-uncased"), embedding_dim=1024) model = SentenceTransformer( modules=[static_embedding], model_card_data=SentenceTransformerModelCardData( language="en", license="apache-2.0", model_name="Static Embeddings with BERT uncased tokenizer finetuned on GooAQ pairs", ), ) # 3. Load a dataset to finetune on dataset = load_dataset("sentence-transformers/gooaq", split="train") dataset = dataset.add_column("id", range(len(dataset))) dataset_dict = dataset.train_test_split(test_size=10_000, seed=12) train_dataset: Dataset = dataset_dict["train"] eval_dataset: Dataset = dataset_dict["test"] # 4. Define a loss function loss = MultipleNegativesRankingLoss(model) loss = MatryoshkaLoss(model, loss, matryoshka_dims=[32, 64, 128, 256, 512, 1024]) # 5. (Optional) Specify training arguments run_name = "static-bert-uncased-gooaq" args = SentenceTransformerTrainingArguments( # Required parameter: output_dir=f"models/{run_name}", # Optional training parameters: num_train_epochs=1, per_device_train_batch_size=2048, per_device_eval_batch_size=2048, learning_rate=2e-1, warmup_ratio=0.1, fp16=False, # Set to False if you get an error that your GPU can't run on FP16 bf16=True, # Set to True if you have a GPU that supports BF16 batch_sampler=BatchSamplers.NO_DUPLICATES, # MultipleNegativesRankingLoss benefits from no duplicate samples in a batch # Optional tracking/debugging parameters: eval_strategy="steps", eval_steps=250, save_strategy="steps", save_steps=250, save_total_limit=2, logging_steps=100, logging_first_step=True, run_name=run_name, # Will be used in W&B if `wandb` is installed ) # 6. (Optional) Create an evaluator & evaluate the base model # The full corpus, but only the evaluation queries random.seed(12) queries = dict(zip(eval_dataset["id"], eval_dataset["question"])) corpus = ( {qid: dataset[qid]["answer"] for qid in queries} | {qid: dataset[qid]["answer"] for qid in random.sample(range(len(dataset)), 20_000)} ) relevant_docs = {qid: {qid} for qid in eval_dataset["id"]} evaluators = [] for dim in loss.matryoshka_dims: evaluators.append(InformationRetrievalEvaluator( corpus=corpus, queries=queries, relevant_docs=relevant_docs, show_progress_bar=True, name=f"gooaq-{dim}-dev", truncate_dim=dim, score_functions={"cosine": cos_sim}, )) dev_evaluator = SequentialEvaluator(evaluators) dev_evaluator(model) # 7. Create a trainer & train trainer = SentenceTransformerTrainer( model=model, args=args, train_dataset=train_dataset.remove_columns("id"), eval_dataset=eval_dataset.remove_columns("id"), loss=loss, evaluator=dev_evaluator, ) trainer.train() # (Optional) Evaluate the trained model on the evaluator after training dev_evaluator(model) # 8. Save the trained model model.save_pretrained(f"models/{run_name}/final") # 9. (Optional) Push it to the Hugging Face Hub model.push_to_hub(run_name, private=True)